
 

GEORGIA DOT RESEARCH PROJECT 14-39 

FINAL REPORT 

 
 
 
 
 

USING CROWDSOURCING TO PRIORITIZE BICYCLE 
NETWORK IMPROVEMENTS 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OFFICE OF RESEARCH 
15 KENNEDY DRIVE 

FOREST PARK, GA 30297-2534 
 

  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank.



i 

 

GDOT Research Project RP14-39 
 
 

Final Report 
 
 

Using Crowdsourcing to Prioritize Bicycle Network Improvements 
 
 

By 
Dr. Kari E. Watkins 
Assistant Professor 

School of Civil and Environmental Engineering 
Georgia Institute of Technology 

 
 
 

Dr. Chris LeDantec 
Assistant Professor 

School of Literature, Media and Communication 
Georgia Institute of Technology 

 
 
 
 
 

Contract with 
 

Georgia Department of Transportation 
 
 
 
 

In cooperation with 
U.S. Department of Transportation 

Federal Highway Administration 
 

April 2016 
 
 

The contents of this report reflect the views of the author(s) who is (are) responsible for 

the facts and the accuracy of the data presented herein.  The contents do not necessarily reflect 

the official views or policies of the Georgia Department of Transportation or the Federal 

Highway Administration.  This report does not constitute a standard, specification, or regulation.  

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 
  



iii 

 

1.Report No.: 

FHWA-GA-16-1439 

2.  Government Accession No.: 

           

3.  Recipient's Catalog No.: 

           

4.  Title and Subtitle: 

Using Crowdsourcing to Prioritize Bicycle 

Network Improvements 

 

5.  Report Date: 

     April  2016 

6.  Performing Organization Code 

7.  Author(s): 

Dr. Kari E. Watkins, PE (P.I.),  Dr. Chris 

LeDantec (co-P.I),  Aditi Misra, Mariam Asad, 

Charlene Mingus, Cary Bearn, Alex Poznanski, 

Anhong Guo, Rohit Ammanamanchi, Vernon 

Gentry, Aaron Gooze 

8.  Performing Organ. Report No.: 

      

9. Performing Organization Name and Address: 

Georgia Institute of Technology 

School of Civil and Environmental Engineering 

School of Literature. Media and Communication 

10. Work Unit No. 

11. Contract or Grant No.: 

      GDOT Research Project No. 0013114 

(RP 14-39; UTC Sub-Project) 

12. Sponsoring Agency Name and Address: 

Georgia Department of Transportation 

Office of Materials & Research 

15 Kennedy Drive 

Forest Park, GA  30297-2534 

13. Type of Report and Period Covered: 

       Final; May 2014- April 2016 

 

14. Sponsoring Agency Code: 

            

15. Supplementary Notes: 

Prepared in cooperation with the U.S. Department of Transportation, Federal Highway 

Administration. 

16. Abstract: 

Effort to improve the bicycle route network using crowdsourced data is a powerful means 

of incorporating citizens in infrastructure improvement decisions, which will improve 

livability by maximizing the benefit of the bicycle infrastructure funding and 

empowering citizens to be more active in transportation decisions. This research 

developed a free, GPS-enabled smartphone application to collect socio-demographic and 

route data of cyclists in Atlanta. The crowdsourced data were then used to model the 

factors influencing bicycle route choices of different types of cyclists as defined by their 

perceived safety and comfort with a facility. Finally, this research refined a quality-of-

service measure for bicyclists based on the perceived level of traffic stress (LTS) that the 

users attach to the facility. The developed quality-of-service measure can be used by 

transportation professionals to compare alternative roadway and bikeway designs using 

quantifiable variables such as speed limit, traffic volume, and number of through lanes. 

17. Key Words: 

Crowdsourced data; smartphone app; bicycle 

infrastructure; bicyclist route choice; level of 

traffic stress (LTS) 

18. Distribution Statement: 

            

19. Security Classification 

(of this report): 

 

      Unclassified 

20. Security 

Classification (of 

this page): 

Unclassified 

21. Number of 

Pages: 217 

 

 

22. Price: 

 

            



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 

  



v 

 

TABLE OF CONTENTS 
 

 

EXECUTIVE SUMMARY ........................................................................................................ 1 

CHAPTER 1. BACKGROUND AND MOTIVATION ............................................................. 7 

CHAPTER 2. PARTICIPATORY PLANNING AND CROWDSOURCED DATA .............. 15 

INTRODUCTION .............................................................................................................. 15 

CROWDSOURCING: CONCEPTS, PLATFORMS AND ISSUES ................................. 17 

CROWDSOURCING AND ITS USE IN TRANSPORTATION ...................................... 25 

CONCLUSION ................................................................................................................... 36 

CHAPTER 3. DATA CLEANING AND MAP MATCHING ................................................. 38 

INTRODUCTION .............................................................................................................. 38 

BACKGROUND ................................................................................................................ 40 

METHODOLOGY ............................................................................................................. 45 

CONCLUSION ................................................................................................................... 60 

CHAPTER 4. GEOGRAPHICAL DISTRIBUTION OF CYCLE ATLANTA USERS .......... 61 

METHODOLOGY ............................................................................................................ 61 

SPATIAL CORRELATION ............................................................................................... 64 

CONCLUSION ................................................................................................................... 68 

CHAPTER 5. SOCIO-DEMOGRAPHIC INFLUENCE ON RIDER TYPE CLASSIFICATION 

AND INFRASTRUCTURE PREFERENCE .......................................................................... 69 

INTRODUCTION .............................................................................................................. 69 

LITERATURE REVIEW ................................................................................................... 71 

NEW CYCLIST CATEGORIES ........................................................................................ 78 

METHODOLOGY ............................................................................................................. 81 

DISCUSSION OF RESULTS ........................................................................................... 111 

LIMITATIONS ................................................................................................................. 113 

CONCLUSION AND FUTURE RESEARCH ................................................................. 114 

CHAPTER 6. ROUTE CHOICE MODELING...................................................................... 116 

INTRODUCTION ............................................................................................................ 116 

BACKGROUND AND MOTIVATION .......................................................................... 118 

ANALYSIS AND RESULTS ........................................................................................... 133 

CONCLUSION ................................................................................................................. 144 

CHAPTER 7. LINK BASED QUALITY-OF-SERVICE MEASURE USING BICYCLIST 

PERCEIVED LEVEL OF TRAFFIC STRESS ..................................................................... 145 

INTRODUCTION ............................................................................................................ 145 



vi 

 

LITERATURE REVIEW/BACKGROUND .................................................................... 147 

MODIFIED LTS MEASURE ........................................................................................... 153 

CASE STUDY .................................................................................................................. 168 

DISCUSSION ................................................................................................................... 180 

ANALYSIS OF LTS BY CRITERIA ............................................................................... 181 

CONCLUSION ................................................................................................................. 185 

CHAPTER 8.  CONCLUSIONS AND RECOMMENDATIONS ......................................... 187 

CONTRIBUTIONS AND RECOMMENDATIONS ....................................................... 189 

REFERENCES ....................................................................................................................... 191 

 

 

 

 

 

 

 

 

 

  



vii 

 

LIST OF FIGURES 

Figure 1. Cycle Atlanta User Interfaces ..................................................................................... 11 

Figure 2.  Cycle Atlanta Demographic Categories and Rider Characteristics ........................... 12 

Figure 3. Classifications of Crowdsourcing Systems ................................................................ 21 

Figure 4. Information Flow of the Transit Ambassador Program .............................................. 33 

Figure 5. Original Uncleaned Data: (a) Raw GPS Points (b) Trip Lines Constructed from GPS 

points ........................................................................................................................................... 47 

Figure 6. Zip Codes Completely or Partially within Perimeter ( I-285) or City of Atlanta 

limits ........................................................................................................................................... 62 

Figure 7 . D istribution of Cycle Atlanta Users by Home Zip Code ....................................... 63 

Figure 8. Cycle Atlanta Users Home Zip Code Distribution across Ethnicity Distribution in 

Atlanta ......................................................................................................................................... 64 

Figure 9. Cycle Atlanta Home Zip Code Distribution across Median Household Income 

Distribution in Atlanta ................................................................................................................ 65 

Figure 10.  Cycle Atlanta Users H o m e Zip Code Distribution across Median Age Distribution 

in Atlanta ..................................................................................................................................... 66 

Figure 11.  Cycle Atlanta Users Home Zip Code Distribution across Population Density 

Distribution in Atlanta ................................................................................................................ 67 

Figure 12. Measure of Association between Variables .............................................................. 86 

Figure 13. Socio-demographic and Riding Pattern Distribution of Cyclists across Rider Types89 

Figure 14. Socio-demographic Distributions of Pooled Survey Respondents across Rider Types

 .................................................................................................................................................. 105 

Figure 15.  Different types of Path Generation Algorithms ..................................................... 119 

Figure 16. Cycle Atlanta Trips (a) Number of Trips Recorded by Users (b) Trip Purpose 

Distribution (c) Trip Purpose Distribution across Age (d) Trip Purpose Distribution across Gender 



viii 

 

(e) Trip Purpose Distribution across Rider Type (f) Trip Length Distribution (g) Trip Length 

across Age (h) Trip Length across Gender (i) Trip Length across Rider Type ........................ 140 

Figure 17. LTS Measure Applied in Case Study Area…………………………………… …161 

Figure 18. Closer View of LTS in Case Study Area (Atlanta Beltline) ................................... 163 

Figure 19. Case Study Area LTS 1 and LTS 2 Facilities Only ................................................ 165 

Figure 20. Eastside Trail Bikeshed with LTS 1 and LTS 2 Facilities Only ............................. 166 

Figure 21. Closer View of Eastside Trail Bikeshed with LTS 1 and LTS 2 Facilities Only ... 167 

Figure 22.  Service Area Analysis based on Existing Conditions LTS 1-2 and LTS 1-4 network.

 .................................................................................................................................................. 170 

Figure 23.  LTS for Links with Proposed Improvements and Previous LTS ........................... 171 

Figure 24.  Service Area Analysis based on Proposed Conditions based on Cycle Atlanta Phase 

1.0 Plan, Infrastructure Bond, and Southwest Beltline Access Points. ..................................... 172 

Figure 25.  Existing Network with Possible Key Improvements ............................................. 173 

Figure 26.  Service Area Analysis based on Select Key Improvements. ................................. 174 

Figure 27. Service Area Analysis based on Entire Bike-able  Network (LTS 1-4) ................. 176 

Figure 28.  Bike Accessibility by Network Distance for Each of the Four Modeled Networks.177 

Figure 29. Total Network Length by Distance from the Study Area Stations ......................... 178 

Figure 30. Overall Relevance of Specific Criteria for Determining Overall LTS ................... 183 

Figure 31. Infrastructure with LTS 3 because of Speed Limit (highlighted in pink) and Functional 

Classification (highlighted in blue). .......................................................................................... 184 

 

 

 

 



ix 

 

LIST OF TABLES 

Table 1. Basic Statistics for Socio-demographic Variables ....................................................... 85 

Table 2a. Binary Logistic Regression Models ........................................................................... 89 

Table 2b.Ordinal Logistic Regression Models ........................................................................... 97 

Table 2c. Multinomial Logistic Regression Models .................................................................. 98 

Table 3. Odds Ratio and Confidence Interval for Multinomial and Ordinal Models with and  

without Cycling Frequeny ........................................................................................................... 99 

Table 4. Means and Standard Deviations of Item Responses on Road Conditions and Facilities by 

Rider Type ................................................................................................................................ 105 

Table 5. p – values for Pairwise t-test on Respondents’ Ratings on Influence of Road Conditions 

and Facilities on Bicycling Propensity, Paired by Rider Type ................................................. 103 

Table 6. Exploratory Factor Analysis: Loadings ...................................................................... 109 

Table 7. Regression Analysis for Protected Environment, Route Impedance and Route Stress 111 

Table 8. Most Common Choice Models Used in Route Choice Modelling ............................. 122 

Table 9. Salient Bicycle Route Choice Literature Highlights .................................................. 125 

Table 10. Trip Length as Function of Socio-demographic Characteristics .............................. 141 

Table 11. Deviation from Network based Shortest Route as Function of Socio-Demographic 

Characteristics ........................................................................................................................... 142 

Table 12(a). Choice of Shorter Route Based on Socio-demographic Characteristics.............. 143 

Table 12(b). Choice of Shorter Route Based on Socio-demographic Characteristics and Trip 

Distance .................................................................................................................................... 144 

Table 13. Cycle Atlanta LTS Typology ................................................................................... 152 

Table 14.  LTS Roadway and Bikeway Characteristics ........................................................... 154 

Table 15. Criteria for Bike Lanes Not Alongside Parking Lane .............................................. 158 

Table 16. Criteria for Bike Lanes Alongside Parking Lane ..................................................... 158 



x 

 

Table 17. Criteria for Buffered Bike Lanes Not Alongside Parking Lane ............................... 158 

Table 18. Criteria for Buffered Bike Lanes Alongside Parking Lane ...................................... 159 

Table 19.  Criteria for Shared Travel Lanes ............................................................................. 159 

Table 20. Distribution of Centerline Miles by Level of Traffic Stress and Facility Type……167 

Table 21. MARTA Access Demographics based on 3 mile Biking Distance and Different 

 Levels  of Stress and Proposed Bicycle Improvements ……………………………………...184 

 

 

  



1 

 

EXECUTIVE SUMMARY 

Bicycling has been identified as a critical component of livable communities, as it offers an 

environmentally friendly, cost-effective, congestion-reducing, and health-promoting mode of 

transportation for short trips. According to the National Household Travel Survey (NHTS), 

nearly 40% of all personal trips in the U.S. are two miles or less, a reasonable bicycling distance. 

However, only about 1% of all such trips are made on bicycles, although it has been widely 

acknowledged that bicycling is a healthier and non-polluting mode of transportation.  A major 

reason frequently cited for not adopting bicycling is a perceived lack of safety in shared facilities 

having high traffic speed and volume. Towards mitigating that concern, separate bicycling 

facilities need to be built along corridors that may provide a short route to a destination but are 

avoided by cyclists due to such factors. However, bicyclists being a small and dispersed group, it 

is difficult to get data on their travel patterns through traditional traffic counts and hence regional 

transportation agencies often follow heuristics or stated preference surveys to assign cyclists to 

the city street network.  While heuristics are entirely subjective and dependent on the person 

modelling the traffic flow, stated preference surveys often suffer from recall bias and selective 

preference of the survey participant leading to incorrect understanding of the actual route choice 

of the cyclists.  

This research was carried out in multiple related areas: (1) creating a freely available GPS 

enabled smartphone based application to collect revealed preference data from cyclists of 

Atlanta, (2) developing an open source data cleaning and map matching procedural standard, (3) 

using the data collected via the smartphone application to understand the influence of socio-

demographics of cyclists on route preferences, (4) developing a route choice model for the 

planners and transportation decision makers of Atlanta to understand if and how much cyclists 
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deviate from the shortest route between origin and destination and finally, (5) developing a link 

level stress measure for cyclists based on their level of confidence and comfort with cycling 

infrastructure.  

Cycle Atlanta, a Geographical Positioning System (GPS) based smartphone application 

(app), was developed at Georgia Institute of Technology (Georgia Tech) in collaboration with 

the City of Atlanta to collect revealed preference route choice data of cyclists in Atlanta. Along 

with recording routes, the app provides the users the option to input demographics like age, 

gender, ethnicity and income, and rider characteristics like rider type, rider experience, and 

riding frequency while recording their trips. This research uses the data collected through the 

Cycle Atlanta app to understand the route choice of the cyclists and how the choice is influenced 

by rider and route characteristics.   

The first part of data analysis shows that socio-demographic variables and riding patterns 

are significant predictors of a cyclist’s probability of self-classifying himself/herself into a 

particular category based on his/her comfort with presence or absence of cycling infrastructure 

and his/her interest in cycling. In particular, gender, rider history, and cycling frequency are 

significant in all the models. The results indicate that knowing a cyclist’s demographic 

information can potentially help in classifying the cyclist into a particular rider type. In the 

future, this can help researchers to streamline surveys by replacing sociodemographic questions 

by a single rider type classification question. Alternatively, knowing the socio-demographics 

characteristics commonly available through census data and other surveys, researchers will also 

be able to predict the rider type and hence infrastructure preferences of people without having to 

undertake a new survey design for cyclists only. It will also help in understanding infrastructure 
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and facility need of future cyclists who are not yet cycling and hence, there is no revealed 

preference data on their preference currently.  

The results also direct attention to the requirement of segmented route and facility 

preference decision models for different cyclist types. Since the purpose of the route and facility 

preference analysis is to understand the requirements by rider types, segmented models based on 

rider type may enable a planner to better predict the choices of a future cyclist based solely on 

demographic information of the cyclists. Future route decision model research may therefore 

explore segmentation of the dataset to achieve better predictability. 

 From the second part of the analysis, it is evident that most route perception issues and 

facilities are viewed on a similar scale by cyclists as the mean scores on those facilities are quite 

similar across rider types. Other results indicate that sociodemographic attributes and confidence 

levels influence infrastructure and facility preference. However, the model fits are substantially 

low indicating that rider level data are not sufficient to predict the route level decision process. 

Further investigation is necessary, as the literature shows that choice of route depends on route 

characteristics as well as rider characteristics like age and gender. 

The final part of the study proposes a quality-of-service measure for bicyclists based on 

the perceived level of traffic stress (LTS) that the users attach to the facility. This research 

proposes a modified LTS measure which is based on a LTS measure developed at Mineta 

Transportation Institute and uses traffic and roadway characteristics data that are readily 

available to most transportation agencies and that has been validated by the literature. 

The modified LTS measure can be used by transportation professionals to compare 

alternative roadway and bikeway designs using quantifiable variables such as speed limit, traffic 
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volume, and number of through travel lanes. The modified LTS measure also provides results 

which can easily be understood by the public and decision makers. A case study conducted using 

the modified LTS measure demonstrated the effectiveness of the measure. However, since the 

purpose of the study was to propose a generalized measure, some of the data that may affect 

perceived LTS was intentionally not included in this study. In the future, the modified LTS may 

be updated to include intersection LTS (signalized separated turning movements, vehicle entry 

point for bicycle lanes and protected cycle tracks, bike boxes, left-turn queue and unsignalized 

intersection crossings) and bicycle boulevards depending on data availability and sufficiency. 

In summary, this research will improve opportunities for bicycling, and therefore 

community livability, in urban and suburban areas by evaluating the bicycle network and 

identifying the routes/ links that will have the most impact on cycling ridership should they be 

improved. This research is innovative as the analysis is based on crowdsourced observed and 

perception data collected in real time from actual cyclists, a new form of data collection. 

Additionally, the research also includes modeling the factors influencing bicycle route choices in 

urban and suburban areas, which have also not been compared before. Both the crowdsourced 

data and the bicycle route choice model were used to develop a stress metric to describe bicycle 

network link importance. City planners and engineers will be able to use the results from the 

LTS research to a) identify critical segments or routes along the existing or proposed bicycle 

network that would benefit the most bicyclists if they were improved and b) identify new bicycle 

routes that, if built, may encourage more cycling. Furthermore, effort to improve the bicycle 

route network using crowdsourced data is a powerful means of incorporating citizens in 

infrastructure improvement decisions, which will improve livability by maximizing the benefit of 
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the bicycle infrastructure funding and empowering citizens to be more active in transportation 

decisions.  
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CHAPTER 1. BACKGROUND AND MOTIVATION 

Traditionally, transportation planning in the U.S. has been automobile focused, resulting 

in marginalization of healthy and active modes of transportation like cycling and walking.  

Environmentally, this has led to increased air pollution; economically, this has made the country 

dependent on international fuel economy; and socially, this has brought about an alarming 

increase in obesity, heart disease and asthma among both adults and children (Sallis 2004).  

As a mode choice, bicycling can reduce overall congestion, air pollution and energy 

consumption while at the same time enable an active lifestyle and a low cost, equitable means of 

transportation.  In view of all these, recently, the federal government has geared its policies 

towards promoting biking and walking, and several state and local transportation planning 

agencies have incorporated a bicycle planning module in their long term vision for the region. 

However, literature shows that although 40% of the trips made in U.S. are of bike-able distance, 

only 1.8% of such trips are bicycle trips (Pucher et al. 2011). This low subscription to bicycling 

has been generally attributed to safety issues (AASHTO 2012) with major factors contributing to 

negative safety perceptions being high speed limits, high traffic volumes, last mile disconnect in 

the network and absence of dedicated facilities for cyclists that can provide a physical separation 

from the vehicular traffic (Dill and Carr 2003, Buehler and Pucher 2011).  

Studies reveal that a substantial increase in the number of bicyclists can be achieved by 

providing facilities for safe riding (Pucher and Buehler 2007) and therefore, it is important for 

the planning agencies to know where the cyclists prefer to bike and possibly their ‘willingness to 

pay’ for an added facility. Cities often try to organize the route network by balancing the 

connectivity of the network, shortest travel distances, parking locations, and traffic volumes (Dill 

2004) – but this task is often difficult as perception of safety and comfort varies across level of 
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experience of the cyclists, age, traffic characteristics and several other factors. Therefore, a better 

approach to understand cyclist route choice is to collect the revealed preference data on the 

routes where the cyclists actually travel and then model the factors that influence the route 

choice decision of the cyclists.   

Bicycling trip data are sparsely available for at least four reasons – first, bicycling trips 

often use by-lanes and short-cuts that are not manned during traditional traffic counts; second, 

bicycling trips also tend to happen during non-peak hours of commute, thus again not being 

counted during traffic counts; third, the automated counters are designed to detect vehicular 

metallic mass and therefore tend to underestimate bicycling trips; and fourth, since bicyclists 

constitute a marginal proportion of the total traffic, there are rarely separate count efforts 

employed for cycling trip counts. As a solution to such issues of data collection, smartphone 

applications have been developed to enable users to record their trips by themselves. The earliest 

example of such an effort is the CycleTracks application developed at San Francisco County 

Transportation Authority (Hood et al. 2009) which has now been adopted by over a dozen cities 

across the U.S.  

Recently, the City of Atlanta started expanding its network of bicycle facilities to 

encourage people to bicycle more often. In doing so, they needed to understand the most 

travelled corridors, as well as particular streets that are avoided by cyclists even when those 

streets are the shortest connectors between any two points en route.  For the purpose of data 

collection, collaboration was set up between the Georgia Institute of Technology and the City of 

Atlanta’s planning office to develop a smartphone application that would help in collecting data 

from bicyclists who use these corridors and other city streets. The project was further facilitated 

by support from Atlanta Regional Commission who viewed the project as a means to foster 
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“extensive public involvement by neighborhood residents, business owners, and the citywide 

cycling community” (The City of Atlanta, 2011). 

The smartphone application created for this initiative was named Cycle Atlanta, after the 

name of the project, and was developed by an interdisciplinary team of researchers at the 

Georgia Institute of Technology. The application was based off of CycleTracks, although Cycle 

Atlanta was substantially updated to make better use of current features available in Apple Inc.’s 

proprietary mobile operating system (iOS) and Android as well as to include features that the 

City and local bicycle advocacy groups wanted in the application. The basic feature is trip 

recording, where the application uses the Global Positioning System (GPS) of the phone to 

record the location of the user once per second (Figure 1). At the end of the trip, the user is given 

the option to ‘Save’ the trip and only after the user saves the trip, the trip and related data are 

uploaded to a secure server.  Once the trip is saved, the user can also specify the trip purpose and 

any related free-form note. Trip purposes have been categorized as commute, school, work-

related, exercise, social, shopping, errand, or other, enabling data users to segregate routes based 

on purpose as the infrastructure requirements and preferences may differ by the purpose of the 

trip.  The free-form notes inform the city about the concerns of the users regarding particular 

routes and help in initiating correctional measures sooner.  
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Fig. 1(a)           Fig. 1(b) 

 

       

Fig. 1(c)           Fig. 1(d) 
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Fig. 1(e)             Fig. 1(f) 

         

Fig. 1(g)            Fig. 1(h) 

Figure 1. Cycle Atlanta User Interfaces: (a) Socio-demographic information, (b) Riding 

characteristics information, (c) Trip start screen, (d) Trip end and record screen, (e) &(f) Viewing 

trips, (g) Choosing a trip purpose, (h) Adding a note on anything about a particular spot  
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In addition to tracking cyclists' trips, the app also provides options to enter personal 

information, including age, email address, gender, ethnicity, home income, zip codes (home, 

work, and school), cycle frequency, rider type, and rider history. Figure 2 shows the group 

breakdown of the demographic and rider type categories in Cycle Atlanta. The breakdown of 

age, gender, income and ethnicity was kept similar to the breakdown as found in the household 

travel survey conducted by Atlanta Regional Commission while the rider type and rider history 

categories are exclusive and unique to the design of Cycle Atlanta. The rider history field allows 

users to specify how long they have been cycling and can choose from categories like ‘since 

childhood’, ‘several years’, ‘one year or less’ and ‘just trying it/just started’. This rider attribute 

can be used to see if people who biked from childhood are more likely to adapt to bicycling as a 

mode choice or if there is any relation between biking preferences and the years of experience 

the bicyclist has.   

 

 

Figure 2.  Cycle Atlanta Demographic Categories and Rider Characteristics  

 

Age Gender Ethnicity Home Income

Less Than 18 Male White Less than $20,000

18-24 Female African American $20,000-$39,999

25-34 Asian $40,000-$59,999

35-44 Native American $60,000-$74,999

45-54 Pacific Islander $75,000-$99,999

55-64 Multi-racial $100,000 or greater

65+ Hispanic/Mexican/Latino

Other

Cycle Frequency Rider History

Daily Since childhood

Several times per week Several years

Several times per month One year or less

Less than once a month Just trying it/just started
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The other parameter, cyclist type, was adopted from a Portland State study (Dill and 

McNeil 2012) and modified to suit the needs of Cycle Atlanta. At its present form, there are four 

cyclist categories that the user can choose from – ‘strong and fearless’, ‘enthused and confident’, 

‘comfortable but cautious’, and ‘interested but concerned’. At its core, this new parameter 

actually represents an interaction term between the attitude of the rider and his/her comfort level 

with the city road network. This new parameter is thus best capable of presenting the varying 

need of different cyclist types and can actually be used as a proxy for risk aversion attitude for 

modeling bicyclist route choice. 

Providing all such details is entirely optional on the part of the application user and is 

strictly protected by the privacy protection provisions of Institutional Review Board (IRB). 

Therefore, users are not required to enter information into any of the fields, and can still use the 

app to record trips if they choose not to share their personal information.  

The motivation of this research is derived from two main issues that it attempts to 

address. First, the research uses smartphone-application-based crowdsourced data for 

understanding the infrastructural need of the cyclists and their behavioral preferences. The 

advantages of using crowdsourced data is that it provides a less costly and labor intensive 

method of sampling for the planning agencies; while for the participants, it provides them with 

the flexibility of participation without any time and locational constraint. However, since the 

process is based on voluntary participation, there is a possibility of having self-selection bias in 

the collected data; i.e. any trend in the data may be heavily influenced by motivated and enthused 

cyclists rather than the infrequent and casual cyclists who are in more need of cycling 

infrastructure than the avid cyclists. The data may also suffer from systematic bias towards a 

young and high income generation, because of its dependence on technology for data input. 
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Therefore, the ability of this research to realistically predict the behavioral preferences of the 

cyclists of Atlanta will add to the literature on the suitability and reliability of crowdsourced data 

for planning purposes.  

This research is also motivated by earlier studies that addressed cycling route choice 

problems, but did so without any consideration for attitudinal differences between cyclist types 

based on rider characteristics (for example, between ‘strong and fearless’ cyclists versus 

‘comfortable but cautious’ cyclists), cycling experiences or socio-demographics like age or 

gender. It has been speculated that perception of safety varies across all these categories, but the 

effect of varying perception of safety on route choice decisions is a poorly studied area that 

needs further exploration. The Cycle Atlanta app collects optional demographic data from its 

users including age, gender, ethnicity, cycling frequency, rider type (comfort level), rider history 

(cycling experience), home income and zip codes (home, work and school). As will be evident 

from the literature review, the cycling experience and the type of cyclists are new features 

exclusive to the Cycle Atlanta dataset and inspire this research to identify how route choice 

preferences differ across rider type, age, gender, experience and any interaction thereof. 

Finally, the aim of this research is to create a practical and useable tool that the planners 

and engineers can use to identify links that are critical for having a connected bicycling network 

between more frequently used origins and destinations. Research has shown that the decision to 

bicycle depends significantly on having a connected shortest route between origin and 

destination. However, as mentioned earlier, since this connection is related to perception of 

safety, it is important to understand how the definition of a connected network varies between 

different types of cyclists.  This research contributes in that area by developing a quality-of-

service measure based on perceived level of traffic stress as it varies across rider types.  



15 

 

CHAPTER 2. PARTICIPATORY PLANNING AND 

CROWDSOURCED DATA 

INTRODUCTION 

Researchers have long emphasized the importance of public participation in the planning 

process as a critical component to the successful implementation of any plan (Innes 1998, Burby 

2003, Slotterback 2010).  Broad public participation leads to “greater legitimization and 

acceptance of public decisions, greater transparency, and efficiency in public expenditures, and 

greater citizens’ satisfaction” (Burby 2010).  According to Burby, inclusion of stakeholders with 

varied interests and different backgrounds makes a plan comprehensive, acceptable, and more 

easily implementable (Burby 2010).  Moreover, a participatory planning process effectively 

recognizes that “society is pluralist and there are legitimate conflicts of interest that have to be 

addressed by the application of consensus building methods” (Hague et al. 2003).  With these 

traits in mind, participatory planning has the potential to involve broader and more diverse 

groups of people into a planning dialogue and hence, can bring in newer perspectives and ideas 

to the planning problem at hand (Rabinowitz 2013). 

Recent research, however, suggests that citizen involvement at different stages and levels 

of planning is steadily declining in the U.S. (Skocpol and Fiorina 1999, Galston 2004, Pew 

Research Center 2013).  This seems counterintuitive given the fact that over the last few decades, 

information accessibility and remote participation has been facilitated and made easier through 

the ubiquitous use of the internet and web-based social media.  A wealth of emerging 

technologies have brought about significant new forms of communication and interaction, 

providing diverse new ways of documenting, sharing, and reflecting on the world at a truly 

global scale. 
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One possible reason for this decrease in citizen involvement may be that planners and 

policy makers have yet to embrace technology-mediated forms of participation and instead still 

rely on methods that require the physical presence of the participant.  These methods limit the 

availability of the planning process by placing time and location constraints on participation and 

may also alienate or further disadvantage citizens for whom travelling to a planning meeting is 

neither physically nor financially viable.   

One strategy for overcoming limited participation from interested stakeholders is to 

implement multiple methods of participation that participants can choose from, depending on 

their level of comfort and accessibility (Wagner 2012).  Slotterback (2010) proposed that along 

with the traditional methods of public hearings and open-house meetings, more accessible modes 

of communication like project websites, web-based meetings and discussions may be adopted as 

a means of increasing public participation in the planning process. Toward that end, the purpose 

of this paper is to encourage the use of crowdsourcing platforms as a possible means of involving 

people from diverse walks of life to effectively participate in planning for transportation systems 

without putting additional financial burden on the transportation agency.  This chapter highlights 

the successful use of crowdsourcing in a few transportation projects, providing examples of 

projects that have overcome many of the initial challenges of adopting crowdsourcing in 

transportation planning and establishing a robust starting point for future work.   

This chapter is organized as follows: first, the concept of crowdsourcing is discussed 

along with a commentary on the existing platforms and types of crowdsourcing and the issues 

associated with crowdsourcing in general.  Then, the crowdsourcing case studies in 

transportation planning are presented with reference to the different genres of crowdsourcing.  

The first group of case studies focuses on receiving feedback from users while the second group 
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focuses on use of crowdsourcing for data collection.  A standalone example is provided at the 

end of the case studies sub-section as it deserves special mention because of its use of data 

quality editors to ensure data usability and validity, thereby addressing one of the biggest issues 

of crowdsourced data collection.   

CROWDSOURCING: CONCEPTS, PLATFORMS AND ISSUES 

At its conception, social computing focused mainly on building a network of 

collaborators and facilitating online communication between groups.  This has eventually given 

rise to open source platforms and forums where people with similar motivation and outlook can 

come together to solve issues and to find answers to problems that affect their community.  

Crowdsourcing is one such example where an organizer or an organization is able to use the 

network of collaborators to solve a problem that would otherwise be cost or labor intensive or for 

which the available expertise within a defined organization is unavailable or insufficient.   

  Crowdsourcing has been alternately defined as: the outsourcing of a job (typically 

performed by a designated agent) to a large undefined group in the form of an open call (Howe 

2006); a process that “enlists a crowd of humans to help solve a problem defined by the system 

owners” (Doan et al. 2011); or “a sourcing model in which organizations use predominantly 

advanced Internet technologies to harness the efforts of a virtual crowd to perform specific 

organizational tasks” (Saxton et al. 2013).  Common across these alternate definitions is the 

notion that crowdsourcing invites all interested people to form an open forum of ideas that can 

eventually lead to a solution of the assigned problem.  As Howe (2006) states, crowdsourcing 

utilizes the “latent potential of crowd” to achieve a solution to a problem that the crowd can 

relate to.   
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According to Saxton et al., crowdsourcing systems are characterized by three main 

features – the process of outsourcing the problem, the crowd, and a web-based platform for 

collaboration (Saxton et al. 2013).  Outsourcing a problem generally implies getting a task done 

by outside sources even when it could have been performed by people within a system; in 

crowdsourcing, outsourcing is done in cases where either the in-house expertise has failed to 

produce a solution, or is an expensive means to produce a solution, or there is no in-house 

expertise available to use for solving the issue.  Crowdsourcing systems also rely largely on an 

anonymous unidentified group of people (“the crowd”) to come together willingly instead of the 

business sub-contract model of outsourcing where the task is performed by a previously 

identified and designated group of people or a company (Saxton 2013).   

An important subset of the general crowdsourcing idea is the concept of citizen science, 

in which amateurs contribute to research projects in conjunction with the professional scientists.  

Goodchild used the term “citizen science” in describing crowdsourced geo-mapping, referring to 

the fact that information generated through crowdsourcing, although not of the level of a 

professional, helps in expanding the reach of science (Goodchild 2008).  The nature of 

participation of the people in citizen science projects takes different forms depending on the type 

of the project and can range from data collection to data analysis, from instrument building to 

taking part in scientific expeditions.  Recent citizen science projects tend to focus on utilizing the 

ever increasing reach and availability of electronic gadgets, particularly mobile phones and 

sensors, for data collection and monitoring purposes.  In their experiments, Kuznetsov and 

Paulos (2010) and Kuznetsov et al.(2011)  provided citizen scientists with sensors to monitor air 

and environmental quality, while the CycleTrack project in San Francisco used GPS enabled 

mobile devices to record cyclist trip data (Hood et al. 2011).  Citizen science projects are gaining 
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popularity as an alternative to cost intensive data collection efforts, particularly in cases where 

the information needed is global in character, and are thus being increasingly used for planning 

and monitoring purposes.   

Existing Crowdsourcing Platforms and Systems 

Despite the advantages discussed in the previous section, crowdsourcing can only be 

successful if a platform exists that can provide open access to incorporate, modify, and 

synthesize data.   There are four different versions of this shared platform – the wiki system, 

open source software, geocrowd mapping, and mash-ups using crowdsoucring data (Kitchin and 

Dodge 2011).  Wiki systems are mainly centered on authoring information; open source software 

provides a platform to share and co-develop program source code; geocrowd mapping entails 

collecting, cleaning, and uploading GPS data; and mash-ups are combinations of some or all of 

these.  While maintaining coordination among people coming from different backgrounds and 

motivations is a significant challenge, this voluntary coming together of a mass of people for a 

purpose is particularly useful in tackling problems that are large scale, e.g., mapping of a 

country.    

Beyond the fundamental concept of providing an open access and participatory platform 

for a large group of people, crowdsourcing projects can be markedly different depending on the 

purpose of the project, the nature of involvement required, or if some special expertise is 

required for participation.  Figure 3 schematically represents the different categorizations of 

crowdsourcing systems which are further discussed herein.  Based on the nature of involvement 

of the participants in solving the problem, Doan et al. (2011) classified crowdsourcing systems as 

either explicit or implicit systems (Figure 3).  Explicit systems are standalone systems where 
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users participate and collaborate in executing a stated problem like answering questions via the 

web, testing software and writing web content (e.g., Wikipedia).  Within explicit systems there 

are four different types of tasks that users generally perform: (i) evaluating (e.g., book review), 

(ii) sharing (e.g., feedback on system performance), (iii) building artifacts (e.g., designing T-

shirts at Threadless.com), and (iv) executing tasks (e.g., collaborating on finding gold mining 

spots).  Implicit systems can be standalone or piggyback depending on projects.  In standalone 

implicit crowdsourcing systems, the system owners benefit from the indirect input provided by 

the users; the direct user input is used to solve a problem that is related to but not the same as the 

issue that the users of the system respond to.  For example, although humans are more efficient 

at image recognition than computers, they are not necessarily willing to perform this task unless 

it is packaged in a form that attracts them.   In the Extra Sensory Perception (ESP) game, the 

participants are shown images and asked to guess common words to describe those images as 

part of playing the game.  Those words are then used to label the image (Doan et al. 2011).  In 

piggyback crowdsourcing systems, the traces of the users are collected from an entirely different 

system – ad keywords generated based on Google and Yahoo search traces are examples of 

piggyback implicit crowdsourcing systems.   
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Figure 3. Classifications of Crowdsourcing Systems (Doan et al. 2011, Steinfield et al. 2013, 

Erickson 2010) 

 

Steinfield et al. (2013) categorized public participation as either general purpose or 

domain specific systems.  General purpose systems do not require any special expertise from the 

contributors and are not targeted to any user group in particular, while domain specific systems 

are designed for a special purpose user group (Figure 3).  For example, most crowdsourced 

service quality feedback does not require any special expertise on the part of the participants and 

are hence, general purpose systems.  Conversely, developing or beta-testing open source 

software through crowdsourcing requires expertise in particular programming languages and 

platforms and are hence, domain specific systems.   
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Crowdsourcing systems are further classified based on whether the system is local or 

global in scope and whether the system is time bound or not (Erickson 2010) (Figure 3).  For 

crowdsourcing systems where the participants are at the same place at the same time, the system 

is termed as audience-centric (e.g., clickers used in class discussions).  For systems where 

participants can be at different places but the crowdsourced event is time bound i.e., it has a start 

and end time between which the collaboration has to happen, such systems are termed as event-

centric.  An example of event-centric crowdsourcing is organized online brainstorming sessions 

triggered by an event and spanning over a limited period of time.  Systems where collaboration 

can happen between people from different places and over an indefinite period of time are 

termed global crowdsourcing systems (e.g., Wikipedia).  Finally, systems where people are at the 

same place but the crowdsourcing is an ongoing process are termed as geo-centric 

crowdsourcing – an example is bicycle route choice data collection for a city. 

Crowdsourcing Issues 

As crowdsourcing keeps evolving and gaining popularity, different and larger systems are 

being experimented with and the issues uniquely associated with the characteristics of the 

systems are gradually surfacing.  For example, domain specific systems automatically reduce the 

crowd size by requiring some expertise from the participants while implicit systems have the 

issue of not having explicit participant consent in using their contribution for the actual purpose 

of the project.  A priori understanding of the project characteristics and hence its category can 

often largely help in setting up plans early to overcome such issues.  The last case study 

presented in this paper is one such example where instead of making the system domain specific, 

an expert group is used as data quality auditor.  This helps in retaining a larger participant base 

as well as provides the necessary check on the usability of the data collected through a general 
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crowdsourcing system.  As crowdsourcing gets applied to different domains, and as the scale and 

scope of crowdsourcing systems increases, additional techniques for addressing these system 

specific issues need to be developed based on the requirement of the projects.   

Beside the unique issues of the systems, operation and maintenance of crowdsourcing 

systems in general suffer from four major issues – (i) how to recruit and retain the participant 

base, (ii) user capabilities, (iii) how to aggregate the information provided by the users and (iv) 

how to evaluate the contribution of the users (Doan et al. 2011).  The problem of recruiting and 

retaining participants is a major issue in adopting crowdsourcing for any project.  Depending on 

the purpose of the project, it is often important that feedback is obtained from users with 

particular skills or expertise.  Furthermore, retaining participants is often important for 

understanding a trend over time – to allow the crowd’s understanding of the problem to evolve 

throughout the process.  The use of recurring campaigns and marketing strategies at frequent 

intervals (along with new releases of apps) is suggested where applicable so that people remain 

curious about the project and the developers can help maintain a participant base over time 

(Priedhorsky et al. 2007).  Using incentives in the form of material benefits as well as 

acknowledgement of contribution in the form of gratification announcements at project sites 

make people feel encouraged to participate in the project and can help recognize diverse kinds of 

contributions from the crowd (Doan et al. 2011).   

Dealing with user capability is an important issue in citizen science projects and in 

problem solving projects where participants are required to have some background to appreciate 

the assigned task.  While participatory planning may not generally require special skill sets, in 

cases where the planning process targets a special group, it is important that the participants are 

aware of the specific problems of that group (e.g., planning for bicyclists’ needs requires 
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presence of people who bike in that area so that the relevant problems and issues are brought up 

on the table).  In such cases, the crowdsourcing process may be most successful if it is designed 

as a domain specific system – rather than a general purpose one – where specific tools and 

capabilities are made available to develop and maintain relevant user capabilities.   

Problems with data quality and challenges with data aggregation are two important issues 

that often undermine the benefits of crowdsourcing systems.  Regarding the importance of data 

quality, Heipke (2010) assessed that “quality issues have been a primary point of debate since 

crowdsourcing results started to appear”.  From that perspective, a degree of loose hierarchical 

authority is needed to ensure that the data is useful for its intended purpose.  Additionally, 

aggregation of the data from crowdsourcing is often a complicated task given the volume of 

responses received from a diverse pool of crowd participants.  Coping with data issues is either 

often labor intensive as large data sets need to be manually cleaned, or more cost intensive as 

complex data management systems and processes need to be put into place in an attempt to 

reduce sources of human error.  

Evaluating the contribution of the user is commonly accomplished by setting up an 

automatic screening program to evaluate the validity of user-submitted information based on 

predefined criteria. The screening program rejects any input that does not follow the set criteria 

and thus only valid information is retained.  However, this kind of automation is possible only in 

cases where the input is sufficiently normalized to be evaluated programmatically – in cases 

where the responses are descriptive or subjective, there needs to be a manual evaluation stage 

where each response is evaluated based on its potential contribution to the project. Such manual 

processes are labor and cost intensive and are prone to subjective biases of the evaluator, but are 

also  much needed in order to ensure data quality for the project.    
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CROWDSOURCING AND ITS USE IN TRANSPORTATION 

The characteristic of crowdsourcing that makes it suitable and useful for transportation 

planning is that it voluntarily brings together a large group of people on the same platform to 

address common issues that affect them.  The use of crowdsourcing works successfully for local 

purposes through localized knowledge and acquired experiences (Brabham 2009) because people 

in a region tend to identify themselves with the region where they live, work, and socialize, and 

are generally more interested in the systems that affect them (Erickson 2010).    

A survey of existing transportation systems which use crowdsourcing reveals that the 

predominant purposes of using crowdsourcing in these projects are either data or feedback 

collection from the users.  For example, one popular use of crowdsourcing is in collecting route 

choice data from bicyclists using the GPS functionality of the user’s cell phone – such data are 

not readily available through the standard data collection procedures and designing a separate 

survey for a small population of users is often not cost effective for regional planning agencies.  

Crowdsourcing in this case helps the geographically dispersed and diverse population of cyclists 

to work together on a common interest without financially burdening the planning agencies.  

Similarly, crowdsourcing can also help in collecting feedback from a socio-demographically 

diverse range of users of any transit system that can be immensely useful for improving transit 

service quality and standards.    

Transportation related crowdsourcing systems designed to date can be implicit or explicit 

standalone systems as defined by Doan et al. (2011) and discussed in the previous section.  They 

may also be either geocentric systems where only local users are engaged or global systems 

where any person can contribute to the system.  Extending the categorization of public 

participation as defined by Steinfield et al. (2013), transportation crowdsourcing systems may be 



26 

 

further classified as either general purpose or domain specific systems.  General purpose 

crowdsourcing systems do not require any special expertise from the contributors and are not 

targeted to any user group in particular, while domain specific systems are designed for a special 

purpose user group.   

Examples of transportation related crowdsourcing are presented below with reference to 

the above mentioned classification systems: the first group of examples focus on receiving 

feedback from users while the second group of examples focuses on use of crowdsourcing for 

data collection.  A standalone example is provided at the end of the sub-section as it deserves 

special mention for its use of data quality editors to ensure data usability and validity and at the 

same time, maintaining a broad user base, thereby addressing one of primary challenges of 

crowdsourced data collection.  The section is followed by a discussion on the advantages and 

disadvantages of crowdsourcing systems.   

Crowdsourcing Case Studies 

(i) User Feedback Based Crowdsourcing Systems : 

Three seminal examples of general purpose user-feedback systems are SeeClickFix 

(http://seeclickfix.com), PublicStuff (http://www.publicstuff.com) and FixMyStreet 

(http://www.fixmystreet.com), all of which rely on public feedback about neighborhood issues 

and have been successful in mobilizing communities to take up the task voluntarily.  While 

FixMyStreet is essentially for users to report road maintenance issues, the developers have a 

similar transit-based tool called FixMyTransport (http://www.fixmytransport.com).  SeeClickFix 

and PublicStuff can be used to report “any non-emergency issue anywhere in the world that a 

user wants to be fixed” (seeclickfix.com), be it infrastructural or governance related.   In 

SeeClickFix, users can also set up neighborhood watches where they monitor and report local 
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community issues which are then taken up by advocacy groups or elected officials, and solutions 

are proposed publicly.  It is evident from the nature of the participation in these cases that no 

special expertise is expected from the users.  It is interesting to note that the majority of the 

reported issues are local and community oriented in nature, reinforcing the concept that 

crowdsourcing can be successful in addressing local and regional issues, making it suitable for 

transportation planning.   

Shareabouts is another example of a general purpose crowdsourcing system utilizing an 

innovative approach.  Shareabouts (http://www.shareabouts.org) is a web-based system that uses 

maps to generate user feedback on preferred location of facilities and amenities.  A few ongoing 

projects that use Shareabouts are (i) Chicago Bikeshare where people pin preferred bikeshare 

locations on the map provided, (ii) North Carolina Alternative Bike Route Plan where people can 

vote for preferred alternatives as well as mark any segment that they think might be an 

inappropriate alternative, and (iii) Philadelphia Bike Parking Survey where crowdsourced 

information is collected for estimating the bike parking capacity of the existing stations and plan 

for future expansion.  In Boston, Street Bump (http://streetbump.org) is a mobile application that 

uses a smartphone’s accelerometer to detect potholes and other street hazards as people drive 

around the city – the geo-located street quality data collected through crowdsourcing is 

automatically uploaded and integrated with the city’s process for locating and fixing pavement 

quality issues.   

A transit project using a general purpose crowdsourcing system, OneBusAway was 

created to address the reliability issues with on time performance of transit systems in Seattle and 

to expand upon existing transit tools in the region.  OneBusAway provides several feedback 

mechanisms (email, Twitter, blog, bug tracker) that allow users to make comments or 
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suggestions about the tools (Ferris et al. 2010).  The design of the various tools, along with 

development of new features, has been further shaped by feedback from users via several user 

studies and the IdeaScale feedback platform (another general use tool that can be applied to 

transportation).  Because OneBusAway is open source software, users have also submitted 

improvements of their own to the code.  Thus, users eventually become partners in development 

and design of the OneBusAway program, which promotes a sense of community among the 

transit riders in the region and a sense of ownership of the program.  This ownership is an 

important factor in maintaining the user base for the program (Ferris et al. 2010).   

Another general purpose crowdsourcing project related to transit systems is Tiramisu 

transit (Zimmerman et al. 2011), a user feedback based real time information system for public 

transportation in Pittsburgh.  Tiramisu Transit, a ‘crowd-powered transit information system’, 

uses riders as the human equivalent of automated vehicle location (AVL) thereby providing an 

innovative alternative to more traditional cost intensive data collection.  Tiramisu Transit is a 

smartphone app developed by researchers at Carnegie Mellon University to improve users' 

transit experiences and transit accessibility (Zimmerman et al. 2011) Upon activation, the app 

shows a list of buses or light rail vehicles scheduled for arriving at that time – this list is based 

off past arrival data as well as real time data sent by riders on the vehicle.  Tiramisu provides an 

option for the rider to indicate the level of fullness of the bus, which aids people with disabilities 

to choose the bus they want to access.  Once aboard, the rider can use Tiramisu to find out which 

stop is next and to report problems, positive experiences and suggestions.  Use of Tiramisu is 

motivated by the rider’s ability to use the same real-time arrival and fullness information they are 

reporting. 
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(ii) Crowdsourcing Systems for Data Collection 

While issue reporting crowdsourcing systems like SeeClickFix and FixMyStreet do not 

call for any specific expertise from the user, there may often be systems where data and 

information are needed from a group with specific expertise or purpose, termed domain specific 

systems (Erickson 2010).  Domain specific systems may be nested under a general purpose 

system, such as the bike projects undertaken using ShareAbouts.  While all of these projects use 

the same crowdsourcing platform, the information is collected for one specific region, because it 

is more useful if it comes from the cyclists who use the facilities on a regular basis.  Examples of 

standalone domain specific systems are the crowdsourced bike route data collection projects 

undertaken in San Francisco, Minneapolis, Atlanta, and Austin.  These projects focus on 

developing smartphone apps and websites for cyclists to record their trips so that region-specific 

bikability maps can be created and facilities can be constructed on route segments as required.   

CycleTracks (Hood et al. 2011) and Cycle Atlanta (www.cycleatlanta.org) are both 

projects for collecting bike route choice data through GPS enabled smart phones.  The creation 

of CycleTracks by the San Francisco County Transportation Authority (SFCTA) in late 2009 

was motivated by the lack of data on cyclists, cycling infrastructure, and eventually cyclist route 

choices.  Traditionally, such data would be collected through public meetings because cyclists 

represent only 1-2 percent of commuters making vehicle count methods less useful.  CycleTracks 

made participation in data collection for cyclists more accessible by moving data collection to 

the increasingly common smartphone use.  In CycleTracks, first time users are asked optional 

information to determine cycling habits, such as riding frequency, age, gender, and zip codes for 

home, work, and school.  Users record their trips by starting the app when they set out on a ride 

and then saving and uploading their data once they’ve reached their destination.  The app records 
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bicycle trip route, time, distance, and average speed, along with user-reported trip purpose and 

notes.  The trip data are wirelessly uploaded for analysis of cyclist route choice and is later used 

for planning facilities along the predicted routes (Hood et al. 2011). 

Cycle Atlanta, a similar smartphone app for collecting data about cyclists and their routes 

within the city of Atlanta, was built off the open source codebase of the CycleTracks app.  Cycle 

Atlanta also uses the GPS capabilities of smartphones to save and upload routes to provide basic 

data on how cyclists navigate the city, but the project team added features to the app including 

the ability to note with photos and textual descriptions of specific locations as either issues 

(pavement issues, traffic signal, enforcement, etc.) or amenities (bike parking, public restrooms, 

water fountains, etc.).  The app also includes the collection of additional demographic data 

including cyclist ability and history as an indicator of comfort level to allow analysis of route 

data around an established taxonomy of urban cyclists (Dill and McNeil 2013), and to enable 

correlation with existing cyclist count and census data.  As a distinctly different approach from 

CycleTracks, Cycle Atlanta categorizes cyclists into groups based on their cycling comfort level.  

The categories include strong and fearless, enthused and confident, comfortable but cautious, and 

interested but concerned.  This categorization helps in understanding the preferences of different 

types of cyclists in choosing routes and hence can be immensely informative in creating a 

tailored application like bike maps for any particular group of users.  Since the apps were 

launched in early October 2012, Cycle Atlanta has been used by over 1500 cyclists in Atlanta 

who have recorded more than 20,000 rides – represented by over 30 million individual data 

points.  These data are the core piece of the City of Atlanta’s effort to facilitate more streamlined 

communication between planners and cyclists. 



31 

 

A significant role of domain-specific crowdsourcing is in providing information from an 

otherwise unrepresented or underrepresented community.   For example, due to the small size of 

the cycling community, bicycle maps are not commercially attractive and hence, are rare.  

Therefore, crowdsourced maps and geowikis are particularly suitable for understanding bicycle 

routes and for developing bicycle route maps (Masli 2011).  Also, cyclists can benefit from 

regularly updated information, which is easy to maintain through “delegated responsibility 

among a motivated community with common purpose” (Masli 2011).  Cyclopath 

(http://www.cyclopath.org), a crowdsourced geowiki-based bicycle map developed by 

researchers at the University of Minnesota, provides an example of a domain specific use of 

crowdsourcing in transportation.  Cyclopath maintains an active database of user-contributed 

bicycle routes and trails within the Minneapolis – St. Paul metropolitan area.  The users of 

Cyclopath can add, modify, and delete roads and bike trails, segments thereof, points of interest, 

and neighborhoods.  In addition, Cyclopath allows users to add notes and tags describing any 

feature on the map, such as ‘bumpy’ or ‘closed’.   Revisions are public and tagged to user logins 

for transparency and accountability.  Cyclopath also has features that help the community to 

moderate itself.  A list of ‘Recent Changes’ is also maintained, so that other users can identify 

and undo malicious modifications to the geowiki.  Finally, Cyclopath allows a user to rate bike 

routes on a five-point qualitative scale (excellent, good, fair, poor, and impassable) for their own 

use and for aggregation to enhance bikability ratings.  The Cyclopath community has made more 

than 13,000 revisions since release (cyclopath.org).   

(iii) Standalone Crowdsourced Data Quality Auditor System  

Along with generating data from underrepresented groups, domain-specific 

crowdsourcing also helps in data quality management, which is an issue with self-reported data 

http://www.cyclopath.org/
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in crowdsourced systems.  As a study by Wiggins and Crowston (2013) revealed, most of the 

systems that use voluntary public participation include some form of expert control over the data.  

An expert user group can act as a bridge between general users and the system by filtering 

required information from general information and then by translating back the feedback from 

the system to the general users in a meaningful way.  This helps in maintaining a feedback loop 

that is important in retaining participants and also prevents losing the critical mass which is often 

the case if the entire process is domain specific.   

A standalone example of such an effort in transportation systems is the transit 

ambassador program initiated by the OneBusAway, Seattle program (Gooze 2013).  The transit 

ambassadors are a super user group, with a solid understanding of the transit network and basic 

computational and analytical skills.  Their role is to filter the incoming general purpose 

crowdsourced information and channel it to the respective departments within the transit agency 

for necessary action.  Three core goals of the program development included addressing problem 

resolution, engaging the community, and improving agency-rider communication.  Beginning in 

the fall of 2011, a number of errors with the real-time transit prediction data surfaced, affecting 

over 77% of a survey of riders (Gooze et al. 2013).  While the OneBusAway mobile application 

included an error reporting function to allow users to identify errors experienced, the amount and 

quality of the crowdsourced reports began to overwhelm the OneBusAway administrators.  

Oftentimes, reports were duplicates of previously reported errors or the information submitted 

was incomplete and required additional effort to utilize it.  With upwards of 500 errors reported 

on a weekly basis, the time required to evaluate these reports and any attempt to leverage them in 

order to resolve underlying problems with the real-time system would have required an effort 

from a collection of individuals.  In contrast to previously described crowdsourcing programs, 



33 

 

this was not an issue of data collection, but rather a problem with information management.  The 

management of the errors required the coordination between the agency, the OneBusAway 

administrator and the riding community; however, due to the constrained resources of each 

organization, there was no single contact to coordinate between these entities.  This role fell to a 

collection of volunteer super users, or OneBusAway Transit Ambassadors.  Figure 4 provides a 

visual summary of the flow of information established within the program and the role of the 

Ambassadors in coordination of the process.   

 

Figure 4. Information Flow of the Transit Ambassador Program 

 

An initial group of three Transit Ambassadors were recruited from the rider community 

via blog solicitation and email outreach.  The Ambassadors were provided resources such as 

transit schedule data, agency alert information and an “Error Decision Matrix” to assist in 

categorizing the crowdsourced error reports.  All error reports were collected into an online 

database that allowed the Ambassadors to not just validate the error but to identify the nature and 

possible cause.  This action of validation was a necessary and vital step in transforming the 

 
 
 

Figure 2: Information Flow of the Transit Ambassador Program 
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overwhelming amount of crowdsourced information from varying noise into usable knowledge. 

Finally, the Ambassadors aggregated the information to forward onto the transit agency a clear 

and concise summary of notable issues reported by riders.  For example, the summary of errors 

by vehicle and route provided the transit agency with valuable supporting information to help 

target potential actions to improve the real-time information system.    The overarching role of 

the Ambassadors provided a level of expertise that could accurately evaluate the incoming error 

reports and thus efficiently triage and divert any relevant issues to the appropriate organization. 

Providing a behind-the-scenes look at the underlying issues confronting the transit 

agency allowed the Ambassadors to relay that information to the rider community and to provide 

some context to the errors that everyone was experiencing.  For example, a typical public 

relations response by the agency would have been interpreted far differently as compared to the 

Ambassadors relaying this information out in the community, which provided an enhanced level 

of trust.  While some underlying real-time issues could not be resolved by the agency, the 

Ambassadors provided a means to explain to riders why an issue could not be fixed and how 

they could best adjust to the situation.   

The success of the outreach exhibited by the Ambassadors and their role in representing 

not just the agency but the riders themselves gave validity to the potential that a fully deployed 

Ambassador program has within any real-time information system.  With the proper adjustments 

to the available agency support and an expansion of the amount of Ambassadors, a Transit 

Ambassador program can effectively accomplish the core objectives and serve as not only a 

means for improving the real-time information product but serve as a mechanism for an agency 

to fully engage its riding community in a method that improves the overall functionality and 

quality of the transit service provided. 
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Summing It Up 

Despite the fact that crowdsourcing has been used in transportation planning only 

recently, it is evident from the case studies presented that it has immense potential in 

augmenting/replacing traditional survey methods, particularly for groups of stakeholders who 

have a small user base in the transportation system.  As seen with all systems, crowdsourcing 

also has its own issues that need to be addressed through proper planning and understanding of 

the system.  Although there are criticisms with respect to data quality and data management 

issues, it is undeniable that crowdsourcing has been successful in engaging groups of people in 

solving a problem that affects their community.  Crowdsourcing for bike route choice data has 

successfully solved the issue of data aggregation, defining a role of the users and linking their 

contribution to the final goal of the project by developing facilities for the bicyclists in San 

Francisco, Minneapolis, Atlanta and Austin.  Meanwhile, transit information systems like 

Tiramisu Transit and OneBusAway have been very successful in redefining the role of their 

users in monitoring service standards and quality.  The OneBusAway transit ambassador 

program has the potential to address the data quality issues associated with crowdsourcing by 

filtering and validating the data received from participants before the data reach the agency.   

Most of the crowdsourcing systems use devices and technologies that are readily 

available and low cost – often crowdsourcing is based off devices that are owned by individuals 

(as in cycling data collection in CycleTracks and CycleAtlanta), involving no major financial 

investment on the part of the system.  In an exemplary case, the Tiramisu project, described 

previously, uses crowdsourcing to actually replace the requirement of high cost AVLs.  Tiramisu 

provides an example of ideal civic engagement in transit planning and operation where riders 

take care of other riders without the direct involvement of the transit agency and create an 
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information sharing legacy that is beneficial to both the users and the agency.  With current 

funding limitations, crowdsourcing can be a preferred alternative to involve the public despite 

limited resources.   

It should be noted however, that CycleTracks and CycleAtlanta are based on the 

widespread popularity and reach of the smartphone technology for crowdsourcing.  While 

smartphones are easy to carry powerful devices that provide an inexpensive means of data 

collection, the usage of smartphones is restricted among some groups, such as those above 40 

years old – thus, using smartphones for data collection comes with the issue of bias towards the 

input from these populations (Windmiller et al. 2014).  Further research into possible biases 

arising from smartphone data collection is underway (Windmiller et al. 2014) and preliminary 

results show that age, income and ethnicity are the major factors that should be considered in 

smartphone data collection. This, however, can be addressed using proper outreach efforts and 

using supportive traditional methods for people who are not currently smartphone users.   

CONCLUSION 

Crowdsourced transportation projects bear evidence that crowdsourcing has the potential 

to bring together a large group of people on the same platform when there is an issue that affects 

them all.  Systematic use of information and feedback from users for the purpose of 

transportation planning or for improving service standards is receiving significant attention 

recently and smart technology based crowdsourcing provides an ideal platform for engaging a 

broad group of users with limited additional financial burden on the system or the agency – 

possibly even replacing costly equipment.  Crowdsourcing for data collection is found to be 

financially most effective in cases where the user base is small but enthused and motivated as in 

the case of bicyclists – in such cases crowdsourcing has a huge potential in augmenting the 
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standard data collection procedures by including the requirements of the otherwise marginalized 

groups of users.  Examples of a few potential transportation related cases where crowdsourcing 

can be used are traffic data collection, getting user feedback for different systems, pavement and 

sidewalk quality monitoring and in understanding people’s opinion in creating new facilities.   

Crowdsourcing issues are mostly concentrated around problems with data quality, 

accuracy and data aggregation.  However, these issues may be addressed through proper 

planning and with an understanding of the final goal of the crowdsourcing project.  Further 

research and implementation of such strategies in real life projects are needed to establish a 

generic framework of crowdsourcing for transportation planning.    
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CHAPTER 3. DATA CLEANING AND MAP MATCHING 

INTRODUCTION 

Traditional travel behavior related data collection methods depend on surveys where the 

respondent is either required to recall an experience or incident or extrapolate present day 

experience to a future scenario. In both cases, the collected data suffers from respondents’ 

personal bias and is dependent on recall efficiency of the respondents. In particular, surveys that 

span for multiple days and record multiple events are more likely to suffer from missing data on 

events that the respondent did not consider important for the reporting purpose. For example, 

household travel diary surveys that are generally used to record all household trips over a week 

typically tend to under report short trips and connection trips (walk to transit, errand trip during 

lunch). The other problem with multi - day surveys is that respondents suffer from survey fatigue 

towards the end of the survey period, leading to high rates of attrition and often, a low response 

rate to begin with.  

Replacing or complementing traditional survey methods with data collected via advanced 

technologies like sensors and GPS enabled devices is gradually becoming popular among 

transportation researchers across the world (Shen and Stopher 2014, Du and Aultman-Hall 2007, 

NCHRP 2014). The ability of such technologies to record data without direct effort of the 

participant as well as the ability to capture revealed preference data of the participants in real 

time makes these technologies immensely usable for intelligent transportation systems where 

routing decisions are dynamic and made in real time. As recall effort is removed, the data quality 

is also improved substantially even though data collected through GPS is not always completely 

accurate.  Multiple studies have shown that GPS devices capture 20% – 30% more trips than 
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traditional survey methods (Bricka & Bhat, 2006; Stopher & Greaves, 2009; Stopher & Shen, 

2011) 

The use of GPS for data collection becomes particularly useful for user groups that are 

small in number but have distinct trip characteristics and hence infrastructure preferences such as 

pedestrians or bicyclists. Planning for such groups without data from the users themselves can be 

seriously flawed and has proven to be significantly less effective for encouraging people to use 

non-motorized transport.  The regional planning agencies, however, are often unable to allocate 

sufficient funds and human resources to conduct a separate data collection effort for users like 

cyclists who constitute only about 1 % of all transportation system users. Towards that end, there 

has been a shift recently towards designing participatory planning processes that help people 

come together on a virtual platform or to provide indirect input to the planning process through 

data contribution. These methods rely on people’s willingness to participate in the planning 

process and to share data voluntarily, and passive data collection technologies play a significant 

role in facilitating such platforms. These platforms, if successful, can remove additional data 

collection burdens for the planning agencies and can bridge the gap between data need and data 

availability. Cycle Atlanta is one such platform which was created for cyclists to voluntarily 

come together to better inform the City of Atlanta of their preferences and requirements. 

The primary purpose of the Cycle Atlanta app is trip recording, in which the app uses the 

GPS capability of the phone to record the location of a user on a second by second basis and the 

trip is uploaded when it is complete. This offers a high level of precision for recording trips over 

time, allowing for detailed research on route preferences not previously available on mass-scale 

data.  However, to enable studies involving route choice and decision making models, these GPS 

points must be processed so that a trip follows the existing system of linear paths which comprise 
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the road network. This task is non-trivial, particularly for the scale of Cycle Atlanta, in which we 

are analyzing about 20,000 trips with each trip consisting of about 1000 geocoded points.  

In this chapter, we present the preprocessing routines as well as two map matching 

procedures that were designed and used to process the Cycle Atlanta data. Parts of the 

preprocessing routines were borrowed from existing literature while parts were designed in 

house and proved to be very effective in reducing the computational burden at later stages of 

analysis. The map matching algorithms were developed as a combined outcome of a decision 

process on the part of the user as well as available network characteristics. The entire process of 

cleaning the GPS data and matching trips to network was carried out using open source software 

R and the code will be freely available in the GitHub repository of Cycle Atlanta.   

BACKGROUND 

This research is based off data collected via GPS enabled smartphones and hence, the 

literature review presented here is focused on issues that are commonly found in the data 

collected through GPS. It should be noted though that there are other passive data collection 

devices like stationary sensors and in-vehicle information systems which have their own 

advantages and disadvantages that are beyond the scope of this paper and hence not covered 

here.  

GPS enabled devices are capable of recording the latitude, longitude, heading, speed, 

altitude, and timestamp of a user at intervals of one second, three seconds or five seconds. 

Generally, data are collected per second but Shen and Stopher (2009) compared data adequacy 

for trip identification and mode detection across different time intervals and concluded that a five 

second interval provides sufficient data for trip and mode identification while reducing the 



41 

 

number of GPS points to be dealt with. The location point is recorded via triangulation of signals 

from at least 3-4 satellites and issues with GPS data are mainly related to loss of signals or 

reflection of signals across high rise buildings. 

There are two different types of GPS devices that are used for data collection – (1) GPS 

units either connected to a hand held Personal Data Assistant (PDA) or carried separately by the 

participant – in both cases, the GPS unit is dedicated to the purpose of data collection and it is 

the respondents’ responsibility to monitor the unit and, often, record additional data such as 

sociodemographic data that the GPS unit cannot capture (Du and Aultman-Hall 2003, NCHRP 

2014) and (2) GPS enabled devices that passively collect location data via some application – the 

primary purpose of the devices is not collection of location data but having GPS capability 

enables it to record location data of the user with timestamps. The respondent burden is hugely 

reduced with these devices as the users do not have to take part directly in the data collection 

system.  

The data collected via passive GPS enabled devices often suffer from noise and 

uncertainty that require a substantial amount of post processing efforts to render the data usable 

(Shui and Shalaby 2007, Quddus et al. 2007, Pyo 2009, Auxhaussan 2012). The inaccuracy 

occurs from multiple sources - loss of signals at certain locations, particularly at the start and end 

of the trip (cold start/warm start), reflection of signals between tall buildings before it reaches the 

device (urban canyon effect), not having enough satellites for accurate triangulation, and 

interference of signals at intersections. The data cleaning methods developed to deal with these 

problems are generally rule-based and use the number of satellites, speed and heading change, as 

well as position jump to identify points that are part of the trip (Stopher et al. 2005, Lawson et al. 

2010, Shen and Stopher 2014, Wolf et al. 2001).   
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Trip Start and End 

One of the most difficult parts of GPS data cleaning is identifying trip start and trip end 

points. At the start of the trip, the GPS device requires some time to acquire satellite signal, 

stabilize and then start recording the trip. Until that time, the signal jumps, resulting in a 

scattered cluster of points which make it difficult to identify the actual start or end point of the 

trip. Since the GPS records data at a regular interval, the most intuitive approach to identify trip 

end points is to identify points where the time interval between any two consecutive points is 

more than a specified dwell time. Multiple studies have used this to identify trip start and end 

points, albeit with different dwell time criteria. The most commonly used time gap is 120 

seconds, the Highway Capacity Manual prescribed maximum signal timing, so that trips are not 

terminated when they are stopped at the signals (Schonfelder et al . 2002, 2003, Wolf 2001, Du 

and Aultman-Hall 2007, Stopher et al. 2005). Other studies have used dwell time from 45 

seconds (Pearson 2001) to 3 minutes (Doherty et al. 2000). However, in most cases, dwell time 

based identification is supplemented by other criteria like zero speed, zero change in bearing 

(Doherty et al .2000, Schussler and Auxhausen 2009, Lawson et al. 2010), difference in latitude 

and longitude (Stopher et al. 2005) and point density (Schussler and Auxhausen 2009). Since 

most of the methods were developed for vehicular traffic, Schussler and Auxhausen 2009, 

Doherty et al. 2000, and Stopher et al. 2003 used engine stop and start time difference as a 

measure of trip end and start identification too.  

Du and Aultman-Hall (2005) used a maximum and minimum dwell time criterion along 

with distance from network and bearing changes to identify trip ends. They used a buffer 

distance of 15 meters from road centerline and GPS points outside this buffer were discarded. 

For the points within that 15 meter buffer zone, dwell time and bearing changes were used to 
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identify trip start and end points. Du and Aultman-Hall (2005) experimented with multiple 

combinations of minimum and maximum dwell times and the algorithm was tested for minimum 

dwell times of 20, 40 and 60 seconds while maximum dwell times tested were 60, 100 and 140 

seconds. They found that any dwell time between the maximum and the minimum is generally 

associated with a 180 ͦ bearing change.  

Besides identifying trip start and end points, there are also issues with signal loss and 

signal noise. NCHRP 775 provides a comparison of three methods for dealing with GPS noise 

filtering (Stopher et al.2005, Schussler and Auxhausen 2009, Lawson et al. 2010) and compares 

the results with a base case where the actual trip is known. All the three methods use dwell time 

threshold, number of available satellites and a threshold value of horizontal dilution of precision 

for noise filtering, along with zero speed and zero heading change. The report classifies the error 

of not removing an invalid point that has been removed in the base case as a Type 1 error while 

removing a point not removed in the base case as a Type 2 error. The analysis of three major data 

cleaning methods show that all the methods tend to have more type 1 errors than type 2 errors, 

whereby the methods tend to retain more points than making the error of removing a point that is 

part of the trip (NCHRP 2014). 

Map Matching  

Map matching is the process of relating input data from global positioning systems to a 

spatial road network map to correctly identify the position of a vehicle on the road network 

(Quddus et al. 2007, Zhou and Golledge 2006, Auxhausan et al. 2009). For transportation related 

studies, as Zhou and Golledge (2006) mention, the map matching process is a means of 

transferring road attributes to the travelled route so that further inferences can be made about 

travel patterns and preferences.  
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Map matching can be either a real time process which is used for most ITS related 

applications or can be done as a post processing step where the vehicle tracking information is 

not essential to update network information instantaneously. For this research, map matching 

was done as a post processing step of data collection and cleaning. The process of map matching 

can be either a point to point matching, point to line matching, or curve to curve (polyline to 

polyline). The process of matching is significantly complicated and is highly prone to errors due 

to the compounded effect of uncertainty of GPS points as well as inaccuracy in the road network. 

Quddus et al. (2007) mentions the accuracy of the match depends both on the quality of the road 

network map as well as the algorithm used because different algorithms may provide different 

efficiency for the same map.  

Map matching algorithms are primarily classified as geometric, topological, and 

probabilistic. Other advanced methods that have been used for map matching include adaptive 

fuzzy logic (Kim and Kim 2001) and Bayesian belief theory (Zhou and Golledge 2006). The 

geometric algorithms generally only take into account the distance of the GPS point to the road 

segments and return the nearest segment to the GPS point as the matched segment. The biggest 

issue with distance based matching is that if there are parallel segments that are sufficiently close 

to each other, then the GPS point can match to the wrong link. This is particularly true if the 

correct link has less nodes than the wrong link or if the matching buffer zones overlap. To 

overcome these issues, other parameters can be added to the matching criteria which include 

travel direction and bearing change, road attributes like one way lanes, speed limits and distances 

travelled on a segment (Najjar and Bonnifait 2003, Taylor 2001).  In view of completing 

multiple parameter matching criteria, Quddus et al. (2003) suggested using a weighting approach 
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to decide on the best match while Kim and Kim (2001) proposed an adaptive fuzzy network 

based training for the same purpose.  

The issue with not using network information for the matching process often can result in 

matches that do not form a logical path which is important for transportation related purposes. 

The topological approaches to map matching restrict the matching using topological properties of 

the underlying network like link connectivity and altitude difference (Greenfield 2002, Ochieng 

et al. 2003). However, constructing a path from link connectivity depends on successive link 

matches which can result in a wrong path even if one of the links is matched wrong. To address 

this issue, Pyo et al. (2001) and Marchal et al. (2004) suggested keeping multiple candidate 

solutions for each GPS point along with some measure of goodness of fit for each candidate. At 

the end of the matching process, the measures are aggregated and a match is decided based on 

that score.  

Statistical map matching methods have used linear regression models to fit the GPS 

points to a road network (Lakakis 2000). Bierlaire et al. (2013) proposed a map matching 

algorithm that first generates a path between origin and destination points and then calculates the 

likelihood that the GPS points are generated along that path using geographical and temporal 

information. However, since the path is generated based on shortest distance between the origin 

and destination points, if the vehicle uses any other criteria for path choice, it will be difficult to 

find an appropriate match.  

METHODOLOGY 

In this section, we discuss the methods we used to collect, prepare and match the GPS 

data to the road network map of Atlanta. Multiple platforms and algorithms are available for 
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most data processing steps and the related ones were tried and tested within this research. 

However, because bicycling trips tend to differ from vehicular trips, using algorithmic 

approaches developed for car traffic proved to be not very effective for either cleaning or 

matching. For example, since bicyclists often trade off shortest path for safest path or other 

considerations like scenery, any map matching algorithm based on the shortest path approach 

could not be used. Some algorithms could not be used because of the scale of application – this 

research used 15 million GPS points and a road network with more than 18,000 links.  In 

addition, bicyclists are likely to have more options at each stage of the trip and may not be 

required to follow the conventional routes of vehicular traffic, making it more ideal to be 

modeled as a decision process at every intersection than a predetermined route between origin 

and final destination. Therefore, most of the methods used and described here were designed 

keeping in mind the particular nature of the dataset and were modified as required iteratively 

during the process.  

Data Collection  

The GPS data used for this study were collected via the smartphone application Cycle 

Atlanta. Launch of the app in October 2012 was announced by the Mayor of the City of Atlanta 

and the app was widely publicized through various cycling advocacy groups and social media. 

Participation in using the app is voluntary and no reward was offered to record trips. The app is 

designed for both Android and iPhone GPS-enabled smartphones and is freely available for 

download from the app stores. The user has to turn on the app at the start of the trip and 

geolocation of the user is recorded from that point until the user indicates a trip end. The trip is 

not saved unless the person wants to save the trip which s/he can indicate via the ‘save’ button. 

At that point, the trip is uploaded to the secured database maintained by Georgia Tech. For each 
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trip, the app records latitude, longitude, altitude, speed, time, and horizontal and vertical 

accuracy at an interval of 1 second. Figure 5(a) and 5(b) show an example of the original 

uncleaned data from the Cycle Atlanta app.  

                                                                          

(a)         (b) 

Figure 5. Original Uncleaned Data: (a) Raw GPS Points (b) Trip Lines Constructed from GPS 

points  

 

Data Cleaning and Noise Filtering 

The data issues found were classified as (1) systemic, (2) operational and (3) random. 

Systemic errors include issues that occur because of the use of GPS capability and are general in 

nature across all studies using GPS data. For example, cold and warm start problems, signal loss 

issues and urban canyon effects will be classified as systemic errors within our classification 

system. Operational errors are often errors introduced in the system by the users. These issues 

include forgetting to turn off the app after trip completion, using the app for non- cycling trips, 

using shortcuts and bylanes that are not part of the street network, etc. These errors will depend 

on the purpose of data collection and consequently on the participants. Random errors are most 

often related to systemic errors brought into the data due to use of GPS, but the nature of the 
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errors are specific to each instant of recording and, hence, no standardized method can be applied 

to remove such errors.   

The data cleaning was done following established practices from the literature. However, 

knowing the difficulty of map matching with noisy data, a lot of effort was put into early 

cleaning stages before running the snapping algorithms and therefore, the standard practices 

were modified and customized to suit our needs. Some additional criteria were also implemented 

keeping in mind the specific nature of the dataset. Efforts were made to attain a balance between 

retaining as much necessary information as possible in contrast to retaining data that is erroneous 

and can increase the computational burden for a later stage of analysis. It should also be noted 

that the app did not report the number of satellites, so that information could not be used for data 

processing in our case. 

Operational Error Handling 

As the study focused on bicyclists in Atlanta, at first, the data were checked for 

geographical limits – since the app is freely available to anyone owning a smartphone, it was 

suspected that the data might have trips that are not Atlanta based. Therefore, any point with 

latitude and longitude beyond the latitude and longitudinal boundaries of Atlanta [NW: 

33.886823, -84.551068; SE: 33.647808, -84.28956] was removed from the dataset.  Some trips 

were recorded over multiple days which can happen if the user forgets to turn off the app at the 

end of a trip and the app continues to record trips as continuation of the first trip until it is turned 

off. In such cases, the day with maximum number of recorded points was retained and data from 

other days were discarded.    
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Random Error Handling  

Duplicate removal and basic data filtering: Two types of duplicates were identified: (1) 

points within same trip having same timestamp but different latitude and longitude and (2) 

identical latitude, longitude, timestamp and user id but different trip id. So, while in the first 

case, all points except the first point are removed, in the second case, the trip with the lower trip 

id is retained and the duplicates are removed. Some points were recorded with invalid timestamp 

(0000-00-00, 00:00:00) – these points were also removed during this step. 

Horizontal Accuracy: As mentioned in NCHRP report and used in other research, the 

horizontal accuracy (haccuracy) threshold could be between 5 and 20 for a point to be a valid 

point. For this research, haccuracy limit was set to 30 – any point with horizontal accuracy more 

than 30 was removed from the database. The higher-than-standard limit was set after 

experimenting with haccuarcy values of 10, 20 and 30. Since the data are from cyclists who tend 

to use bylanes, cut throughs and underpasses which do not always have a good signal, setting a 

higher accuracy expectation resulted in removing too many points and created connectivity 

issues as well as sparse data problem for shorter trips.  

Systemic Error Handling 

Speed, Distance and Heading: The app recorded instantaneous speed at each point as 

well as latitude and longitude. Since the app is designed for cyclists, points with instantaneous 

speed more than 12 mph were discarded. Points with zero speed were further checked for 

distance and bearing from a point preceding 10 points upstream and the point succeeding 10 

points downstream. If either distance or bearing change remained zero, the point was removed 

from the database.  
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Sparse Data: Some trips were found to have too few points for proper identification. The 

threshold ratio of distance to number of points was set such that speed between two consecutive 

points should not exceed 100 feet per second. If more than 50% of a trip consisted of points that 

did not match this criterion, the trip was discarded.  

Noise Filtering: To filter points that are mainly signal jumps, a criterion similar to sparse 

data was used. If the distance from the point 10 steps before and/or 10 steps ahead of the point 

being checked is such that it cannot be traversed in the time between the timestamps at a speed of 

70 feet per second, then that point is removed from the dataset. An additional check, if a large 

group of 10 or more points are major deviations, was used to remove any GPS point that was 

over 5,280 feet from the point that is 10 positions prior to it.   

Data Reduction: The Cycle Atlanta dataset consists of about 15,000 trips, with each trip 

on average recording more than 1000 GPS points. One of the concerns was using such a large 

amount of data for map matching and our initial experiments of map matching in ArcGIS and R 

proved to be significantly slow and often problematic. Therefore, we decided to apply the 

Douglas-Peukar algorithm to remove points for a trip that aren’t necessary to identify its true 

shape and distance. The algorithm first identifies the starting and ending point. Then it finds the 

point in the line that is furthest perpendicularly from that line. If that distance from the point to 

the line is greater than the tolerance, then that point is kept and it remaps the “line” from the 

starting point to that furthest point. That new line then finds the point that is furthest from itself 

and does the same check. If it is within the tolerance, then that point is dropped and the algorithm 

checks for the next furthest point. It iterates over the whole line until all points have been 

checked. The tolerance used for our purposes was 5 feet, with the projection of the NAD83, 

UTM18 (North American Datum 1983, Universal Transverse Mercator, Zone 18). This means 
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that any point that varied by more than 5 feet from the line between the points before and after, 

was kept, and any point that was under 5 feet was removed. This struck a good balance between 

ensuring that much of the route shape was kept while limiting the number of points needed.  In 

addition, it ensured that for snapping purposes, no streets were skipped that were clearly traveled 

on. For a street to be snapped, there had to be a point near it. Therefore, reducing the number of 

points with too large of a tolerance would have resulted in long straight segments of a path with 

no points kept. The 5 foot tolerance allows for enough precision while clearly reducing the 

number of points required. 

With this simplified line, we can then interpolate the points in it for snapping purposes 

and determine whether there are any path duplicates. The function ST_DumpPoints in PostGIS 

takes the simplified line and returns the points of that line, thus reducing the number of points to 

snap from roughly 15 million to 2 million.  

Map Matching 

There were two processes involved in the map matching part of the project. First, the 

network to which the GPS points to be snapped had to be cleaned and processed for the purpose 

of matching bicycling trips which are quite different from vehicular trips. For example, bicycling 

trips do not happen on freeways and keeping the freeways in the map might result in some 

nearby trips snapping wrongly to freeway segments. Therefore, we preprocessed the network 

map to better suit our purpose. 

Three data sources were used to create the road network map. The Atlanta Regional 

Commission’s street network shapefile (RC_ROUTES) was obtained from the travel demand 

modeling group of Atlanta Regional Commission (ARC). It is a modified version of the roadway 



52 

 

database maintained by the Georgia Department of Transportation (GDOT) and focuses on state 

managed roadways rather than locally managed roadways and bikeways. However, it contains 

the most comprehensive inventory of roadway characteristics like speed limit, annual average 

daily traffic (AADT), number of lanes, truck volume etc. which are useful information for route 

choice modeling at a later stage. The second data source used is Open Street Map’s (OSM) 

bicycle map for Atlanta. The OSM map has local roads and locally managed facilities which 

were not present in the RC_Routes map. The two maps were spatially joined based on a buffer 

distance to get a more complete map of the road network of Atlanta.  The resulting map was then 

cleaned for non-bicycling facilities like freeways. The final data source was the Metro Atlanta 

Bicycle Facility Inventory. The location of on street parking on roadways with conventional 

bicycle lanes and buffered bicycle lanes was manually coded in ArcGIS using Google Earth 

imagery. The treatment of intersection approaches with right turn only motor vehicle lanes that 

connect to links with conventional bicycle lanes, buffered bicycle lanes, or protected cycle tracks 

were also manually coded in ArcGIS using Google Earth Imagery. As a final measure, the trips 

were plotted on the map and checked for links traversed by cyclists but missing in the network. 

Such links were manually added where more than 2 bicycle trips were found to follow a path but 

the path was not marked as a link in the network. This was assumed to be mainly because of 

tendency and ability of bicyclists to use cut-thrus and private alleys which are not marked in 

regional network maps. However, shortcuts through parking lots were not added as links 

although there were multiple such cases.  

Rebuilding the network file was done in ArcGIS partly because it was easier to merge 

multiple shapefiles in ArcGIS and also because we felt it was necessary to have a visual check 

on the merging and link imputation processes. The final shapefile was then imported to R using 
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rgdal [shapefile to .ogr] (Bivand et al. 2015) and shp2graph [.ogr to igraph object] (Lu 2014) 

packages within R. The map was imported with the option of retaining all the associated 

properties as dataframes i.e. all the link characteristics were imported into R along with the 

shapefile. The graph object was then used for map matching using the packages igraph (Csardi et 

al. 2015) which is a fast and efficient package for handling large networks and spatstat (Baddaley 

et al. 2015) which is an advanced spatial statistical package for analyzing spatial patterns. 

Once the network map was ready, we used two different methods to snap the trip data 

onto the network. The first base case used a combination of geometric and topological approach 

while the second method was designed to make use of the adjacency properties of network 

elements and reduce the computational burden of network search at every single instance of GPS 

recording.   

Scenario 1: Base case 

 In this method, a spatial cross distance matrix between each trip point and each node in 

the network was created using ‘spatstat’ package. The matrix was then sorted to get the 

minimum distance node for each trip point. The list of the nodes thus generated was first cleaned 

to keep one instance of a node occurring for multiple times consecutively. It should be noted that 

separate instances of the same node were retained in the list where sequences were broken by 

instances of other nodes occurring in between sequences of the same nodes. For example, a node 

sequence {4, 5, 5, 2, 5, 5} would be filtered via this process to {4, 5, 2, 5}. Then the list was 

filtered for oscillation of nodes – if a different node was visited after and before two instances of 

same node, that node was removed from the list i.e., after this step, the list showed earlier should 

become {4, 5, 5}. Finally, the list was filtered for unique values as one node could be the nearest 

node of multiple trip points and the list would contain multiple entries of that same node – at this 
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stage, the list should only contain {4, 5}. The unique nodes were then successively checked for 

connectivity using the ‘igraph’ package. As identification of a trip was dependent upon proper 

identification of the start point, a special check was introduced to identify the start point. The 

first node in the filtered list was checked to see if it was the start node for at least two 

consecutive links i.e. if at least three consecutive points after the first point were successively 

connected. Upon failure, the next point was checked for similar criteria and the process was 

repeated unless a match was found. In all cases, a match was found within the first three nodes. 

The connectivity check was then run successively on each node starting from the matched start 

node and the connected nodes were retained in a list. At any point during the process, a list was 

terminated when a point was found to not be connected to any of its three consecutive nodes and 

a new list was started with the first point that was not connected to its preceding point. So, if the 

starting list was c = {1, 2, 5, 6, 7, 8, 9, 10}, node 1 was first checked if it was connected to node 

2; if true, node 2 was then checked for connectivity with node 5 and then node 5 with node 6. If 

node 5 was not connected to node 6, it was checked if node 5 was connected to node 7 or node 8. 

If it was not connected to either node 6, node 7 or node 8, then list was terminated as c = {1, 2, 

5} and a new list d = {6} was started. Next it was checked if node 6 was connected to node 7 – if 

true, then node 7 was added to list d such that d = {6, 7} and the check continued with addition 

of connected nodes to the list and termination of a list whenever the last node of the list had three 

consecutive nodes to which it was not connected. However, random checks on trips indicated 

that loss of connectivity either occurred at the beginning or at the end of the trips, implying that 

the points were GPS errors rather than actual trip points. The process would give multiple lists of 

connected nodes which could then be aggregated and used to find the actual trip once the last 

node was reached. Any list with 3 nodes or less was not considered for the purpose of 
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aggregation as most of the road segments in the original map had more than 3 nodes (consisting 

of 2+ polylines). When aggregating, a check was introduced for a common node in the adjacency 

list of the last node of the first list and the first node of the second list and that node was added 

into the list between the other two nodes to get a continuous path. One of the biggest advantages 

of this method would be that it inherently adjusts for sparse data through aggregation of links and 

via imputation of the node from the adjacency matrix which could be missed due to sparse data. 

So, if there are two separate lists c = {1, 2, 5, 8} and d = {6, 7, 10, 11}, upon aggregation, the 

method checked the adjacency list of node 8 and the adjacency list of node 6. If the adjacency of 

list of node 8 was {12, 13, 15} while the adjacency list of node 6 was {16, 13 and 9}, then node 

13 was added to the end of list c and then list c and list d were aggregated.  

The connecting links for successive pairs of nodes were then retrieved with their 

associated properties and stored as the chosen path for the trip.  

Pseudo Code: 

 

𝒘𝒉𝒊𝒍𝒆 𝑡𝑟𝑖𝑝 − 𝑖𝑑 ≠ ∅ {  
𝑑 ← 𝒄𝒓𝒐𝒔𝒔𝒅𝒊𝒔𝒕(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛𝑜𝑑𝑒𝑠);  
𝑐 ← {𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝑐𝑜𝑙 𝑖𝑛 𝑑 𝑔𝑒𝑡 𝑟𝑜𝑤𝑖𝑑 𝑤𝑖𝑡ℎ𝐦𝐢𝐧 𝑐𝑒𝑙𝑙 𝑣𝑎𝑙𝑢𝑒} ; 
𝒇𝒊𝒍𝒕𝒆𝒓 𝑐 𝑏𝑦: 
𝒇𝒐𝒓 𝒊 𝒊𝒏 𝒄[𝒏] 
{ 
𝒊𝒇 { 
𝑐(𝑖) = 𝑐(𝑖 + 1) 
 𝑐[𝑛] = 𝑐[𝑛] − 𝑐(𝑖 + 1); 
}; 
𝑖 = 𝑖 + 1; 
} 𝑒𝑛𝑑 𝑓𝑜𝑟 
𝒓𝒆𝒕𝒖𝒓𝒏 𝒄; 
𝒇𝒐𝒓 𝒊 𝒊𝒏 𝒄[𝒎] 
{ 
𝒊𝒇{  
𝑐(𝑖 − 1) = 𝑐(𝑖 + 1); 
 𝑐[𝑚] = 𝑐[𝑚] −  𝑐(𝑖) 
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}; 
𝑖 = 𝑖 + 1; 
} 
𝒓𝒆𝒕𝒖𝒓𝒏  𝒄; 
𝒇𝒊𝒍𝒕𝒆𝒓 𝒄 𝒃𝒚:  𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑜𝑤𝑖𝑑;  𝑟𝑒𝑡𝑢𝑟𝑛 𝑐;  
𝒄𝒉𝒆𝒄𝒌: 𝒇𝒐𝒓 𝒋 𝒊𝒏 𝒄[𝒌] {  
𝒊𝒇 { 
𝒂𝒓𝒆. 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅(𝑐(𝑗), 𝑐(𝑗 + 1)) == 𝑻  
 𝑗 = 𝑗 + 1; 
𝒆𝒍𝒔𝒆𝒊𝒇  
{ 

𝒂𝒓𝒆. 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅(𝑐(𝑗), 𝑐(𝑗 + 2)) == 𝑻,  

𝒄𝒉𝒆𝒄𝒌: 𝒊𝒇 { 

𝒂𝒓𝒆. 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅 (𝑐(𝑗 + 1), 𝑐(𝑗 + 2)) == 𝑻  

𝑗 = 𝑗 + 2; 
}  
𝑐[𝑘] = 𝑐[𝑘] − 𝑐(𝑗 + 1); 𝑗 = 𝑗 + 1; 
}  
𝒆𝒍𝒔𝒆𝒊𝒇  
{  

𝒂𝒓𝒆. 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅(𝑐(𝑗), 𝑐(𝑗 + 3)) == 𝑻  

𝒄𝒉𝒆𝒄𝒌: 
𝒊𝒇{ 

𝒂𝒓𝒆. 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅(𝑐(𝑗 + 2), 𝑐(𝑗 + 3)) == 𝑻  

𝒊𝒇{ 

(𝒂𝒓𝒆. 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅(𝑐(𝑗 + 2), 𝑐(𝑗 + 1)) == 𝑻 

 𝑗 = 𝑗 + 3}; 
𝑐 = 𝑐[𝑘] − 𝑐(𝑗 + 1); 𝑗 = 𝑗 + 2}  
𝑐 = 𝑐[𝑘] − 𝑐(𝑗 + 1) − 𝑐(𝑗 + 2); 𝑗 = 𝑗 + 1; 
} 
 𝑗 = 𝑗 + 3; }  
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1 

𝒕𝒓𝒖𝒏𝒄𝒂𝒕𝒆 𝑐 𝑎𝑠 𝑙𝑖𝑠𝑡 [𝑐𝑜𝑢𝑛𝑡𝑒𝑟] = 𝑐[𝑗]; 
 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 

} 
 𝑐 = 𝑐[𝑘] − 𝑐[𝑗]; 
𝒓𝒆𝒑𝒆𝒂𝒕 𝒑𝒓𝒐𝒄𝒆𝒔𝒔 
}   
𝑪𝒉𝒆𝒄𝒌: 
 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑙𝑖𝑠𝑡(𝑖) 𝑤𝑖𝑡ℎ 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑙𝑖𝑠𝑡(𝑖

+ 1) 
 𝑝 ← { 𝑐𝑜𝑚𝑚𝑜𝑛 𝑛𝑜𝑑𝑒}; 
𝑓𝑖𝑛𝑎𝑙𝑙𝑖𝑠𝑡 ← 𝑢𝑛𝑙𝑖𝑠𝑡 𝑎𝑙𝑙 𝑙𝑖𝑠𝑡𝑠 
} 
𝑡𝑟𝑖𝑝 − 𝑖𝑑 < − 𝑛𝑒𝑥𝑡(𝑡𝑟𝑖𝑝 − 𝑖𝑑) 
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Validation:  

Five random trips were chosen and the snapping algorithm was run on them. In all the 

five cases, the removed nodes were the last few nodes in the list. We also ran a Djikstra’s 

shortest route between the first and last node before removal and in all the cases, the program 

could not find a valid route between them. However, when the same program was run to find the 

shortest route between the revised first and last node, it was able to find valid routes between 

them which indicates that removed points have a high probability of being GPS errors rather than 

valid trip identification points.  

We did not have the issue of sparse data, so it was not possible to validate the 

effectiveness of the adjacency matrix approach for finding missing links. Since the proposed 

algorithm only checks for one missing node, it might have issues when there are multiple 

missing links in between two valid nodes. In such cases, it may be worthwhile to assume that the 

trip took the shortest path between the last node of the first list and the first node of the second 

list and then retrieved the nodes associated with that path. The final and complete node list then 

will consist of the two original lists with the nodes on the shortest path added in between the last 

node of the first list and the first node of the second list.  

Scenario 2: Map matching using adjacency matrix 

In this case, first we created an adjacency matrix for all the nodes in the graph. Then, 

only the first five GPS points of a trip were selected and their nearest nodes were searched for in 

the entire network. The nearest nodes were then checked for connectivity and the first point that 

led to three consecutive connected links was flagged as the trip origin. We next created an 

adjacency list for the selected node and added the selected node to that list. For the next GPS 
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point, we searched the nearest node from that list. Once that node was selected, we took the 

adjacency list of that node, added the node back itself and searched for the nearest neighbor for 

the next GPS point and the process was repeated until we reached the trip end. The final list was 

then first filtered for repeated occurrences of the same node consecutively and then it was 

filtered for instances where one different node occured between two instances of same node.  

Pseudo Code: 

𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑖𝑝 − 𝑖𝑑 ≠ ∅ { 
## 𝒈𝒆𝒕 𝒕𝒉𝒆 𝒔𝒕𝒂𝒓𝒕 𝒑𝒐𝒊𝒏𝒕 ## 

𝑝𝑜𝑖𝑛𝑡𝑠_𝑠𝑢𝑏 ← 𝑝𝑜𝑖𝑛𝑡𝑠[1: 5] 
𝑑 ← 𝑐𝑟𝑜𝑠𝑠𝑑𝑖𝑠𝑡(𝑝𝑜𝑖𝑛𝑡𝑠_𝑠𝑢𝑏, 𝑛𝑜𝑑𝑒𝑠);  
𝑐[𝑚] ← 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑜𝑙 𝑖𝑛 𝑑 𝑔𝑒𝑡 𝑟𝑜𝑤𝑖𝑑 𝑤𝑖𝑡ℎmin 𝑐𝑒𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 ; 
𝑐[𝑛] ← 𝑓𝑖𝑙𝑡𝑒𝑟 𝑐[𝑚]𝑏𝑦 𝑢𝑛𝑖𝑞𝑢𝑒 𝑟𝑜𝑤𝑖𝑑; 
𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑐[𝑛]𝑖𝑠 𝑠𝑖𝑛𝑔𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡, 𝑡ℎ𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑎𝑡 𝑛𝑜𝑑𝑒 

𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑐[𝑛]{ 
𝑎[𝑗] ← 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑙𝑖𝑠𝑡(𝑐(𝑖)); 
𝑐ℎ𝑒𝑐𝑘: 
 𝑖𝑓 𝑐(𝑖 + 1)𝑖𝑠 𝑖𝑛 𝑎[𝑗] ==  𝑡𝑟𝑢𝑒; 𝑑[ ] = [𝑐(𝑖 + 1), . . ] 
𝑖 = 𝑖 + 1 ;  
𝑒𝑙𝑠𝑒𝑖𝑓 𝑐(𝑖 + 1) 𝑖𝑠 𝑖𝑛 𝑎[𝑗] ==  𝑓𝑎𝑙𝑠𝑒,  
𝑓[ ] = 𝑐(𝑖 + 1) 
 𝑖 = 𝑖 + 1; } 𝑒𝑛𝑑 𝑖𝑓  
𝑐ℎ𝑒𝑐𝑘:  
𝑖𝑓 𝑙𝑒𝑛 [𝑑] > 𝑙𝑒𝑛[𝑓]  
𝑛𝑜𝑑𝑒𝑠 = 𝑛𝑜𝑑𝑒𝑠 − [𝑓 ] 
𝑒𝑙𝑠𝑒 𝑛𝑜𝑑𝑒𝑠 = 𝑛𝑜𝑑𝑒𝑠 − [𝑑 ] 
## 𝑬𝒏𝒅 𝑺𝒕𝒂𝒓𝒕 𝑷𝒐𝒊𝒏𝒕 ## 

 

## 𝑴𝒂𝒑 𝑴𝒂𝒕𝒄𝒉𝒊𝒏𝒈 ## 

𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑛𝑜𝑑𝑒𝑠 { 
𝑎[𝑗] ← 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦. 𝑙𝑖𝑠𝑡 [𝑛𝑜𝑑𝑒𝑠(𝑖)]; 
𝑐[𝑘] ← 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑎[𝑗], 𝑛𝑜𝑑𝑒𝑠(𝑖)] 
𝑐ℎ𝑒𝑐𝑘: 
𝑚𝑖𝑛. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑜𝑑𝑒𝑠(𝑖 + 1), 𝑐[𝑘]); 
𝑠𝑒𝑙𝑒𝑐𝑡 𝑐(𝑘)𝑤𝑖𝑡ℎmin 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒𝑠(𝑖 + 1); 
𝑑[𝑖] ← {𝑐(𝑘), . . } 
𝑖 = 𝑖 + 1; } 𝑒𝑛𝑑 𝑓𝑜𝑟 
## 𝑷𝒐𝒔𝒕 𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 ## 

𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑑[𝑖]{ 
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𝑐ℎ𝑒𝑐𝑘: 
𝑖𝑓 { 
𝑑(𝑚) == 𝑑(𝑚 + 1), 
𝑑[𝑖] = 𝑑[𝑖] − 𝑑(𝑚); 
𝑚 = 𝑚 + 1} 𝑒𝑛𝑑𝑖𝑓 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑑}; 
𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑑[𝑖]{ 
𝑐ℎ𝑒𝑐𝑘: 
𝑖𝑓 {𝑑(𝑗 − 1) == 𝑑(𝑗 + 1), 
𝑑[𝑖] = 𝑑[𝑖] − 𝑑(𝑗) 
} 
𝑟𝑒𝑡𝑢𝑟𝑛 𝑑; }} 

 

There are multiple advantages to the second  method of map matching as compared to the 

first one. First, it is computationally efficient as it has to search the entire network only for the 

first few GPS points instead of all the GPS points in a trip. In the case of large network files like 

that of Atlanta, this is a huge advantage. Second, it does not require storing a huge distance 

matrix for further processing which renders the process memory efficient. Third, by using an 

adjacency list, it already asserts connectivity and no further check is required. Fourth, without 

any nearest distance threshold, it will always find an adjacent node for a GPS point which 

reduces the risk of prematurely ending a trip. The threshold distance value for the nearest node 

can be modified as needed for the research. Finally, the biggest advantage of this algorithm is 

that with slight modifications, it can be used to probabilistically determine a route when GPS 

data are sparse. By adding link characteristics to the adjacency list, the algorithm can use the 

utility maximization or cost minimization concept to identify which link will be chosen by the 

user probabilistically.  

However, the problem with this method is that it is contingent upon correctly identifying 

the previous node. If any node identified within the process is wrong, there are chances that the 

trip will be identified completely wrong. This is particularly true if no threshold value for 
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distance between the GPS point and the nearest node is set: in that case, every GPS point will 

return a near node however far it may be, and the trip will be a set of nodes that do not form a 

feasible path. On the other hand, this can also be seen as a second step of data cleaning where 

GPS points that are actually errors are forced to follow the actual route instead of having to do 

multiple checks as in the previous algorithm.  

CONCLUSION 

In this part of the research, a standardized data cleaning and map matching procedure was 

developed which can be useful for any related GPS based data collection effort. The code will be 

made open source and will be available for any future studies. It was found during this stage that 

having a complete and connected street network map is essential for proper execution of any 

snapping algorithm. Multiple platforms, both GIS based and script based, were tested and it was 

found that methods based on scripting languages like ‘R’ are computationally more efficient – 

however, there needs to be a procedure that will enable the results of scripts to be displayed in 

any GIS based software so that a visual check can be performed. In the future, this research will 

be undertaken by  the current study’s researchers.  
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CHAPTER 4 GEOGRAPHICAL DISTRIBUTION OF CYCLE 

ATLANTA USERS 
 

This chapter looks into the spatial distribution of Cycle Atlanta users. The smartphone 

app provides the users with options to provide their home zip code, school zip code (in cases 

where the user is a student) and work zip code. The reported zip code was used to plot the 

distribution of the users within Atlanta Metropolitan area. Further, the user distribution was 

plotted against ethnicity, age, income and population density distributions within Atlanta to 

identify any spatial correlation between user self - selection and user’s home/work/school zip 

code. 

METHODOLOGY  

Users who indicated that they lived outside of the Atlanta metropolitan area were 

purged from the database. This was done by sorting the table of users by the home z ip  

code they reported and deleting the records that contained zip codes outside of the 

Atlanta area. 

For geographic analysis using ArcGIS, a shapefile of Atlanta zip codes was obtained 

from the Atlanta Regional Commission (ARC).  However, ARC's zip code shapefile did not 

contain all of the zip codes reported by Cycle Atlanta users.  For example, the zip code 

30332, which contains part of Georgia Tech’s campus, was not part of the ARC zip code 

shapefile. To rectify this, missing zip codes were drawn into the shapefile using Google 

Maps and a shapefile of city streets for guidance. The chosen study area comprised of zip 

codes located  either  completely  or  partially within Atlanta city limits and/or the Perimeter 

(I-285) , as shown by  the  red  shading  in Figure  6. 
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Figure 6. Zip Codes completely or partially within Perimeter ( I-285) or City of 
Atlanta limits 

 

 The Cycle Atlanta datasets were queried to return a list of each discrete home zip code 

in that dataset as well as how many people in the dataset reported that zip code as their home 

zip code.  The datasets were then joined to the study area zip code shapefile using home zip 

code as the common field.  This resulted in a data table containing fields for home zip code and 

number of Cycle Atlanta users living in the zip code. 

  A map was created in ArcGIS to show the percent of cyclists within the study area 

who reported each zip code as the one they resided in. The map was shaded in such a 

way that darker zip codes had a greater percentage of the dataset’s cyclists (within the 

study area).  For context, an OpenStreetMap basemap was added to each map. 

 To analyze the relationships between Cycle Atlanta user home zip codes and 

demographic traits associated with those zip codes, four maps were generated using census 

data. For each map, the shade of the zip code polygon represents the demographic variable 

(zip code median age, median annual income, percent of non-white residents, and 

population density). The size of the black dot over a zip code represents the percent of 
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Cycle Atlanta users residing there. The median age and percent non-white data were 

obtained from American Community Survey table DP05, "Demographic and Housing, 

2007-2011 5-Year Estimates". The median income data were obtained from American 

Community Survey table S1903, "Median Income in the Past Twelve Months (In 2011 

Inflation-Adjusted Dollars), 2007-2011 5-Year Estimates".  The population density data 

were obtained from American Community Survey table B01003, “Total population, 2007-

2011 American Community Survey 5-Year Estimates". 

Figure 7 shows that cyclists are concentrated in the "intown" part of Atlanta, 

near the center of the Perimeter. Specifically, zip codes east of the Downtown 

Connector (the north-south running Interstate near the center of the study area) have the 

highest percentages of cyclists living within them. 

 

 

Figure 7 .   D istribution of Cycle Atlanta Users by Home Zip Code 
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SPATIAL CORRELATION 

This section examines the correlation between the percent of Cycle Atlanta users 

residing in a zip code and several demographic characteristics of the overall population in that 

zip code – median income, median age, non-white population, and population density. 

Figure 8 shows a comparison between the percent of Cycle Atlanta users living in a 

zip code and the percent of non-white, non-Hispanic residents living in that zip code. The 

darker the zip code, the greater the percentage of non-white residents; the bigger the black dot 

over a zip code, the higher the percentage of Cycle Atlanta users living there. It is 

difficult to see a clear relationship between the two variables. Some zip codes have a low 

percentage of non-white residents and a high percent of Cycle Atlanta users living there 

such as 30306 and 30307 (located between E4 and E5). However, some zip codes have a 

high percentage of non-white residents and a high percentage of Cycle Atlanta users, such 

as 30316 (located between E5 and E6). 

 

Figure 8. Cycle Atlanta Users Home Zip Code Distribution across Ethnicity Distribution in Atlanta  
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Figure 9 shows a comparison between the percent of Cycle Atlanta users living in a zip 

code and the median income of households in the zip code.  The darker the zip code, the 

greater the median incomes of households there; the bigger the black dot over a zip code, the 

higher the percentage of Cycle Atlanta users living there.  Although a high percentage of 

Cycle Atlanta users are from the high income group (greater than $100,000), that is not 

reflected in the geographical representation.  Zip code 30327, for example, has the highest 

median income of any zip code (between $100,000 and $130,270, the income group that 

had the greatest number of Cycle Atlanta users in it). However, 30327 also has one of 

the lowest percentages of Cycle Atlanta users residing in it, at less than 0.353. 

 

Figure 9. Cycle Atlanta Home Zip Code Distribution across Median Household Income 

Distribution in Atlanta



    
 

66 

 

Figure 10 shows a comparison between the percent of Cycle Atlanta users living in a 

zip code and the median age of people living in that zip code. The darker the zip code, 

the greater the median age of people living there; the bigger the black dot over a zip code, 

the higher the percentage of Cycle Atlanta users living there. The researchers could expect 

zip codes with median ages between 25 and 34 to have the greatest percentage of Cycle 

Atlanta users residing in them, since this was the age category with the greatest percent 

of Cycle Atlanta users.  While this is somewhat true, it appears that zip codes with median 

ages between 35 and 44 have greater percentages of Cycle Atlanta users living in them 

than zip codes with median ages between 25 and 34 (which is the age category that has 

the second highest percentage of Cycle Atlanta users in it). 

 

Figure 10.  Cycle Atlanta Users H o m e  Zip Code Distribution across Median Age 
Distribution in Atlanta 

 

Figure 11 shows a comparison between the percent of Cycle Atlanta users living in a zip 
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code and the population density of that zip code. The darker the zip code, the greater the 

population density; the bigger the black dot over a zip code, the higher the percentage of 

Cycle Atlanta users living there. Aside from a few outliers, this map suggests that as the 

population density of a zip code increases, so does the percentage of Cycle Atlanta users 

living in that zip code. This makes sense, since high-density urban areas are often the 

most bikeable. One note-worthy outlier is the zip code 30316, located between E5 and E6. 

This zip code contains dense areas such as East Atlanta Village and Reynoldstown in the 

northern part, but also less dense areas such as Gresham Park in the southern part. It is 

likely that if this zip code were separated into a north part and a south part, the north part 

would show high density as well as a high percentage of Cycle Atlanta users residing in it, 

and the south part would show low density and a low percentage of Cycle Atlanta users. 

 

Figure 11.  Cycle Atlanta Users Home Zip Code Distribution across Population Density 
Distribution in Atlanta 
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CONCLUSION 

The end result of this analysis was an awareness of the differences between Cycle Atlanta 

users and characteristics of the population in Atlanta. Subsequent to this analysis, additional 

recruitment efforts were undertaken to add Cycle Atlanta users from diverse communities 

around Atlanta.  It is of note that less data exist about the cycling population in Atlanta, 

therefore comparisons to the cycling population specifically could not be made.  

It could b e  argued that zip codes are not an adequate geographic unit for analytical 

purposes. Their boundaries tend to be arbitrary, as do their sizes. In the study area used for 

this analysis, some zip codes were very large, while some were very small. Some followed 

neighborhood boundaries, while others crossed them. Because of these inconsistencies, it is 

difficult to draw conclusions from an analysis that uses zip codes as the geographic unit 

(although the zip codes do allow general trends to be observed).  Zip codes were chosen 

for this analysis because that is how Cycle Atlanta users indicate their home, work, and 

school  locations when u s i n g  the app, in absence of other more refined boundaries .  

To protect user privacy, home and work address were not specified in the app.   
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CHAPTER 5. SOCIO-DEMOGRAPHIC INFLUENCE ON RIDER 

TYPE CLASSIFICATION AND INFRASTRUCTURE PREFERENCE 

  

INTRODUCTION 

Popular adoption of bicycling as a mode of transportation can reduce overall congestion, 

air pollution and energy consumption while at the same time enabling an active lifestyle and 

providing users with a low cost, equitable means of transportation (Sallis et al. 2004, Damant-

Siriois et al. 2014).  In view of all these prospective benefits, the federal government has recently 

reoriented its policies towards promoting biking and walking (FHWA). Additionally, several 

state and local transportation planning agencies have incorporated a bicycle planning module in 

their long term vision for their regions, including Atlanta (www.atlantaregional.com/plan2040). 

Despite this recent interest, research shows that although 40% of the trips made in the U.S. are 

less than 3 miles and may therefore be a bikeable trip due to the short distance, only 1.8% of 

such trips are bicycle trips (Pucher et al. 2011). This low usage of bicycling has been generally 

attributed to safety issues (AASHTO 2012), with major safety perception factors including high 

speed limits, high traffic volumes, last mile disconnect in the network, and an absence of 

physically separated facilities for cyclists (Dill and Carr 2003, Buehler and Pucher 2012).  

Studies reveal that a substantial increase in the number of bicyclists can be achieved by 

providing facilities for safe riding (Pucher and Buehler 2009), and therefore it is important for 

planning agencies to know where cyclists prefer to bike and their desire for dedicated facilities. 

Cities often try to organize the route network by balancing the connectivity of the network, 

shortest travel distances, parking locations, and traffic volumes (Dill 2004) – but this task is 

often difficult as perception of safety and comfort may vary across the level of experience of the 

cyclists, age, gender, traffic characteristics, and other factors. This difference in perception is 
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further complicated by a lack of data on individuals who are not cycling at present, but who may 

otherwise choose bicycling as a mode if proper infrastructure and environment are provided. 

Geller (2006) suggested that the majority of Americans belong to this group, and that large scale 

adoption of bicycling for transportation is dependent on making bicycling a viable and 

acceptable option for such riders. He hypothesized, based on his experience working as a bicycle 

planner with the City of Portland, that infrastructure preferences are different across the 

population of Portland cyclists.  According to Geller (2006), these preferences are reflected in 

their level of comfort and willingness to bicycle given certain combinations of road 

characteristics and bicycle infrastructure. 

Multiple studies have attempted to group the diverse range of cyclists and their 

perceptions into categories based on person-level attributes as well as trip-level attributes so that 

preferences and perceptions of cyclists and non-cyclists can be predicted even when data is 

sparse. In addition, there have been studies relating socio-demographic characteristics to cycling 

propensity, although results do not always agree. Being female appears to be the only consistent 

attribute which shows a negative propensity towards cycling (Krizek et al. 2005, Gerard 2006, 

Gerard et al. 2007, Emond et al. 2009, Akar et al. 2013, Segdahlia and Sanchez 2014b).  

However, even that result holds true only for cyclists in the U.S. and Australia – the proportion 

of cyclists that are female is higher in the Netherlands and Denmark, while female cyclists in 

Germany make more trips on average than their male counterparts (Gerard 2006).  Studies by 

Gerard et al. (2007) and Krizek et al. (2005) point towards a greater safety concern and absence 

of cycling infrastructure as reason for this lower adoption rate of cycling among females in the 

U.S. and Australia. They suggest that aversion to cycling in absence of cycling infrastructure 

may stem from the more risk averse nature of women than men under similar situations. On the 
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other hand, drawing parallels from health behavior research, Emond et al. (2009) suggested that 

there are multiple attitudinal factors that influence propensity to bicycle including self-efficacy 

or a person’s ability to confidently engage in an activity.  

In this research, we use data collected from cyclists in the Atlanta region to answer two 

questions: (i) whether self- efficacy, described here as the level of comfort and confidence in 

bicycling, varies across socio-demographic attributes of the cyclists and (ii) if infrastructure 

preference is influenced by the confidence and/or socio-demographic attributes of the cyclist.  

Accordingly, the analysis is presented in two parts: in the first part, we use different 

logistic regression models to understand the dependence of self-classified rider type on socio-

demographic variables and riding characteristics like riding frequency and riding history.  In the 

second part, we use multiple stated preference survey datasets to understand if there are any 

preferences for infrastructure type (bike lane vs bike path) or road characteristics (slopes or 

traffic conditions) that vary distinctly across the rider types. The survey data were analyzed using 

factor analysis and regression models were constructed to understand the correlation between 

confidence levels and infrastructure preferences modeled as different factors.   

LITERATURE REVIEW 

One of the earliest studies on route and infrastructure preference of cyclists was done by 

Aultman-Hall et al. (1997) for the city of Guelph, Ontario, Canada. The user data relied on both 

a mail out community survey and a user survey distributed to cyclists at cycle shops and on the 

road. The study revealed that men bicycle for statistically significantly longer distances than 

women.  Cyclists were found not to choose an off road path or trail until the quality of such road 

or trail was significantly better than the city streets. Collector roads were universally favored 
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over arterials, although speed limit of the link did not seem to influence route choice. For the 

following characteristics, a statistically significant difference was found between the chosen 

route and the shortest route: (i) grade – cyclists prefer routes with less grade than a shortest route 

would have; (ii) traffic signals – cyclists tend to use routes with more signals than the shortest 

route and they particularly use traffic signals for any turning movement; (iii) number of turns – 

cyclists seem to prefer routes with fewer turns than the shortest route, and finally, (iv) cyclists 

tend to avoid links with more than two buses per hour. 

Another stated preference survey study, conducted in St. Paul – Minneapolis by Krizek et 

al. (2006), revealed that cyclists prefer on-street bicycle lanes to off-street trails. Streets with 

bike lanes were also found to be preferable to streets with no on-street parking but no bicycle 

lane as well. Tilahun et al. (2006) conducted an adaptive stated preference survey to determine 

cyclists’ preference between off-road facilities, designated bicycle lanes with parking and with 

no parking, and shared facilities with varying levels of traffic. The results indicate that higher 

income households have higher odds of choosing better facilities, and age and sex are not 

significant, although females are more likely to choose safe facilities than men.  

Sener et al. (2008) used a web-based stated preference survey to collect data on cyclist 

route choice in Texas and used a panel mixed multinomial logit model to estimate route choice 

parameters. Of the chosen attributes, they found that cyclists expressed a sensitivity to travel 

time and preferred streets without on-street parking. Moderate hills were preferred over flat 

terrain and cyclist characteristics entered the model specification only as interaction terms 

between parking and cyclist age – no significant influence of any other cyclist characteristic 

(experience, for example) was noted. Titze et al. (2008) performed a study on 1000 bicyclists in 

Graz, Austria where the participants were asked to fill out a survey related to physical 



    
 

73 

 

environment, home and destination environment, social environment, living quarters and 

attitudes. Their study reported that presence of bike lane connectivity, social support, and 

perceived benefit of rapidity have a positive influence on bicycling while perceived barriers of 

impractical mode of transport and physical discomfort act as major deterrents to bicycling.  

Xing et al. (2008) conducted an online survey among residents of five cities similar to 

Davis, California. Using individual level factors such as socio-demographic and attitudinal 

attributes, social environment factors such as the perception about bicyclists and bicycling, and 

physical environment variables such as presence of bicycle infrastructure, they sought to 

understand how these factors influenced owning and using a bicycle. The study showed that 

attitudes such as “I like biking” are significant in influencing a decision to own or use a bicycle. 

Similarly, a social perception of who the cyclists really are can significantly impact the 

possibility of owning and using a bicycle. Emond et al. (2009) studied the influence of gender on 

a binary dependent variable indicating whether the participant bicycled in the last 7 days or not. 

They used the same ecological model and the same variables as those used by Xing et al. (2008).  

The results indicate that there are significant differences in attitudes and preferences between 

men and women cyclists. While male cyclists find living in a bicycle-friendly community to be a 

positive reinforcement and are more likely to bicycle if they bicycled in their youth, female 

riders are mainly motivated by safety factors and are much more affected if the size of the street 

increases or if there are no bike lanes. Comfort is the most important factor for women bicyclists 

and their household responsibilities possibly deter them from bicycling, as reflected in the 

significance of the factor ‘I need a car to do many of the things that I like to do’ for women 

cyclists. Social perception (bicyclists are rich/ bicyclists are poor) and access to safe destinations 

influence both genders similarly and so do socio-demographic variables like education and child 
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assistance, both of which positively influence propensity to bicycle. However, as with Xing et al. 

(2008), ‘I like biking’ is the most significant positive factor for both groups of cyclists. The study 

by Emond et al. (2009) points to the fact that instead of experience only, gender should be an 

important consideration when planning for bicycle infrastructure. The present bicycle 

compatibility index (BCI) used by FHWA for planning purposes assumes that cyclists become 

confident with experience and will be comfortable bicycling under most traffic situations. 

Therefore, separate infrastructures are planned for inexperienced riders and mostly for 

recreational purposes which often fails to provide access to services. As the study by Emond et 

al. (2009) shows, female riders have marked preference for separate infrastructure irrespective of 

experience and hence, such facilities should be designed more along the primary road network. 

The study also attributed the gender difference in bicycling to difference in perceived safety of 

bicycling and the difference in comfort level across different facility types between men and 

women cyclists.  

Winter et al. (2011) conducted a survey among 1402 current and potential bicyclists in 

Vancouver, Canada to understand the ‘potential motivators and deterrents of cycling’. 

Respondents were grouped into potential (n =197), occasional (n = 617), frequent (n = 481), and 

regular (n = 107) cyclists. 73 potential motivators and deterrents to cycling were identified from 

literature and presented in the survey questionnaire as “how would [item X] influence your 

decision to cycle?” The responses could be marked on a 5 category behavioral intent scale with 

much less likely to cycle having an influence score of – 1 and much more likely to cycle having 

an influence score of +1 and intermediate categories being marked at increments of 0.5. From the 

mean response score, the top 3 motivating items were “the route is away from traffic noise & air 

pollution”, “the route has beautiful scenery” and “the route has bicycle paths separated from 
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traffic for the entire distance” while the top 3 deterring items were “I need to carry bulky or 

heavy items”, “the route has surfaces that can be slick when wet or icy when cold” and “the route 

is not well lit after dark”. Safety factors, which included items like ‘risk from motorists who 

don’t know how to drive safely near bicycles’ and ‘risk of injury from car-bike collisions’, had 

the highest factor scores as a deterrent to cycling has the highest negative mean factor score on 

influence on likelihood of cycling, followed by poor weather and darkness, interactions with 

motor vehicles and route surfaces. Mean scores and ranks were similar across the different 

groups. The factors conducive to cycling were ease of cycling, integration with transit, bike 

parking, and end-of-trip facilities. Lane marking and signage also scored substantially high as 

factors conducive to cycling. The same participants were provided with pictures of 16 different 

routes and asked to indicate which routes they would choose to cycle (Winter and Teschke 

2010). Route preferences were found to be similar across all the cyclist types (potential, 

occasional, frequent and regular). Between 70% and 85% of the participants chose off-street 

paths, 70% of the participants would bike on physically separated routes next to major streets 

and 50-65% would bike on residential routes. Routes with bike lanes, paved surfaces, no on-

street parking and traffic calming increased the likelihood of choosing the route from 12% to 

37%. 

Yang and Mesbah (2013) conducted a survey on a small sample at University of 

Queensland, Brisbane with 19 respondents, majority of whom were high school students and 

postgraduates. They found that distance, travel time, traffic safety and gradient are the most 

important factors in route choice of bicyclists. Akar et al. (2013) sent out an online survey for the 

student, staff and faculty of Ohio State University (OSU) through the OSU Transportation and 

Parking Service’s (T&P) webpage. From about 2000 respondents who provided nearly complete 
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data, results indicate that female respondents are more likely to overestimate their commute 

distances, do not feel safe in vehicular traffic and are more deterred from cycling by the absence 

of bike lanes/paths/trails. Female participants also cited the need to change clothes and carry 

things as major reasons for not bicycling. A significantly lower percentage of female cyclists 

considered themselves advanced cyclists (9%) as compared to male cyclists (35%). Female 

cyclists are also significantly more likely to feel biking and walking on campus after dark unsafe 

– about 30% of female participants agreed that they feel safe biking and walking on campus after 

dark as compared to about 70% of male participants. Mode choice models indicate that being a 

female makes it less likely to be a cyclist, while having bike lanes and trails and feeling safe 

positively impact the possibility of choosing cycling for the commute.  

Segadilha and Sanchez (2014a) conducted a survey on 49 frequent cyclists in the city of 

Sao Carlos, Brazil to identify the relative importance of multiple factors identified from the 

literature.  Slope appeared to have the least importance in choice of route, while number of 

trucks, number of buses, traffic volume, and traffic speed score the highest in influencing route 

choice decisions. The authors also reported that stratification by age, gender, and cycling 

frequency showed that preferences may vary significantly across these categories.  Sousa et al. 

(2014) conducted an email survey involving 380 students from 3 different cities in Brazil. The 

survey provided the participants with six statements on perceived barriers to cycling and asked 

them to rate how positively or negatively these barriers influence their decision to bicycle. The 

perceived barriers included absence of adequate infrastructure, traffic safety, distance, physical 

ability and experience, slopes, and climate. Lack of adequate infrastructure, lack of safety, and 

slopes were found to be the most important barriers to cycling, while climate was the least 

important. Wang et al. (2014) conducted a survey at the University of Auckland to understand 



    
 

77 

 

the factors that influence a cyclist’s decision to bicycle and his/her route choice. The study 

concluded that safety, low traffic volume and speed, separation from cars and pedestrians, and 

separate facilities are important factors in promoting cycling, along with connectivity and ability 

to carry the bicycles on public transport. Wang et al. (2014) also concluded that safety is a more 

important factor for female than for male cyclists.  

Additionally, Barros et al. (2015) designed an online survey to understand the different 

factors that affected mode and route choice. Their findings suggest that presence of cycle lanes 

and bicycle parking encourage people to choose bicycling. Mertens et al. (2015) conducted a 

web-based survey with 389 respondents where participants were presented with photographs of 

two alternative cycling routes. The study was designed to understand how macro-environmental 

factors like residential density interacted with micro-environmental factors like speed limit and 

presence of bicycle facilities to affect participants’ decision to bicycle. Mertens et al. (2015) 

found that while participants preferred low residential density over medium or high residential 

density, preference for a low speed limit and physically separated bicycle facility does not vary 

across choice of residential density.  

On another subject, several studies have developed classification systems for cyclists 

based on person-level attributes as well as trip-level attributes. Damant-Siriois et al. (2014) and 

Dill and Voros (2008) provide comprehensive accounts of different cyclist type classifications 

based on both person- and trip-level attributes. Person-level attributes used in classifications 

include the attitude and comfort level of cyclists (Geller 2006), the behavioral perspective and 

value system of the individual (Paulssen et al. 2011) and a cyclist’s preference for infrastructure 

(Larsen and Geneidy 2011). Trip-level attributes include trip purpose (Kroesen and Handy 2013) 

and whether trips depended on weather conditions (Bergstrom and Magnusson 2003). However, 
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Geller’s classification of cyclists into four different categories of strong and fearless, enthused 

and confident, interested but concerned, and no way no how, based on their comfort level in 

cycling, gained notable popularity and was used in planning for cycling infrastructure by 

multiple regional planning agencies in the last decade (Dill and McNeil 2012; Geller 2006). It 

should be noted though that this classification was devised on an ad-hoc basis and was not based 

on any survey or self-description of cyclists (Geller 2006). Subsequently, in a recent study, Dill 

and McNeil (2012) conducted a random phone survey of 908 adults in Portland, OR asking 

respondents about their comfort level in bicycling on non-residential streets, with and without 

bike lanes, to set up a basis for the categorization. This comfort level question was combined 

with an interest question which asked if respondents wanted to bicycle more than they are 

currently doing. The answers to these two questions were considered together to categorize riders 

into the classifications suggested by Geller (2006). The study categorized the riders who were 

comfortable bicycling on non-residential streets even without bike lanes as strong and fearless 

irrespective of their response to the interest question. Cyclists who were comfortable on non-

residential streets only with bike lanes were classified as enthused and confident riders. The 

cyclists who were not comfortable on any facilities and/or have not bicycled for transportation 

for the last 30 days were categorized as no way no how while the interested but concerned group 

had cyclists uncomfortable on residential streets irrespective of their interest in bicycling.  

NEW CYCLIST CATEGORIES 

According to Geller (2006), the strong and fearless riders are cyclists who would bicycle 

irrespective of road and traffic conditions and whether separate facilities are present or not; the 

enthused and confident riders are cyclists who will choose cycling as a mode of transport even if 

bare-bones facilities are present or if it is not infeasible for them because of distance or road 
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features; interested but concerned is the group of individuals who are currently very infrequent 

bicyclists or do not bicycle at all and will bicycle only when they have protected and separate 

facilities for the purpose i.e., these are the riders who are willing to bicycle if proper 

infrastructure is provided. The fourth category of riders, no way no how, includes the individuals 

who will not bicycle under any circumstances.  

There are multiple ways in which this classification system can be improved. First, within 

a wide spectrum of cyclist ‘types’, the classification misses those people who are enthusiastic 

bicyclists but are not willing to bicycle with bare-bones cycling infrastructure. Most often, their 

concerns are more related to safety than confidence (for example, riding together with children). 

These cyclists possibly bike commute every day but using different routes than the enthused and 

confident group, and often undertake longer detours to find safer routes. On the other hand, while 

they prefer separate cycling infrastructure, these are the people who can also be motivated by 

traffic calming measures and do not require a physical separation from the traffic to be able to 

bicycle. Therefore, this group of cyclists belongs neither to the enthused and confident group, 

nor to the interested but concerned group as proposed by Geller.  

Geller’s classification also misses the captive riders of the system – the people who cycle 

because of a lack of alternatives. While these cyclists may make frequent and regular trips, they 

are not bicycle enthusiasts and generally associate a negative social image with cycling. It is 

much more difficult to retain such users in a cycling system without changes in the social 

perception that cyclists are either poor or rich and that cycling is not the natural normal mode of 

transportation (Xing et al. 2007, Emond et al. 2009). Efforts in that direction will involve not 

only building infrastructure, but also creating awareness and education, thus requiring a different 

policy approach than that for other groups.  
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Our research primarily focused on collecting data from cyclists via a GPS enabled 

smartphone application. We assumed that non-cyclists will not use the application and hence, the 

no way no how category was not applicable. Therefore, for our research, we modified the 

existing rider type classification and added a new group called comfortable but cautious to the 

existing system. This new category was designed to adequately represent the riders who differ in 

their view of safety from more aggressive riders but, at the same time, are similarly enthusiastic 

about bicycling. We also assumed that most captive riders will not be motivated enough to 

provide personal and cycling data voluntarily and therefore did not create a separate group for 

them. However, future work should consider their preferences as well.  In its final form, the rider 

types suggested in this research consisted of four different groups: 

 (i) strong and fearless; 

  (ii) enthused and confident;  

(iii) comfortable, but cautious;  

(iv) interested but concerned;   

While the other groups are expected to show similar attitudinal preference as the Portland 

study (Geller 2006, Dill 2012), the comfortable and cautious group of riders is hypothesized to 

include a greater proportion of female cyclists and/or individuals in higher age groups who are 

bicycle enthusiasts, but are less risk-taking in attitude and hence may appear to be less confident.  
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METHODOLOGY  

The primary purpose of this study is to develop a model that can help us to relate readily 

available socio-demographic data to cyclists’ stated preferences for infrastructure. Toward that 

end, we used multiple data sources and models to find the combinations of attributes that can 

best predict the infrastructure preferences of cyclists. First, we used socio-demographic data 

collected from riders who recorded their trips on a smartphone app called Cycle Atlanta. We 

hypothesized that the rider type classification can serve as a proxy for how cyclists of different 

ages, genders, incomes, and ethnicities perceive risk and comfort on the streets of Atlanta.   

We then used stated preference survey data from two online surveys administered 

separately by two different groups and at a time gap of six months. The first survey was 

conducted by the Atlanta Regional Commission across the region, and the second was conducted 

by our research group and geared to the users of the Cycle Atlanta smartphone application. The 

survey questions related to socio-demographic information and infrastructure preferences of the 

participants were carefully designed to ensure that they had identical wording and choice order in 

both the surveys. The data on infrastructure preferences were then analyzed using factor analysis 

to group similar, correlated preferences under one factor. The factor scores were then regressed 

against socio-demographic variables to understand how they influence a participant’s 

infrastructure preferences.  

PART 1. Predicting Rider Type based on Socio-demographics and Riding Behavior  

In the first part of the analysis, we directed our efforts towards identifying the 

relationship between stated rider type and other socio-demographic variables of participants.  
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Data Source: Cycle Atlanta 

The first analysis uses the data collected through the Cycle Atlanta smartphone 

application, developed through a collaboration between the Georgia Institute of Technology and 

the City of Atlanta’s planning office to promote cycling in Atlanta (The City of Atlanta, 2011). 

The application was named Cycle Atlanta after the larger planning project for which the 

application was initiated, and was developed by an interdisciplinary team of researchers. The 

application was originally based on San Francisco’s CycleTracks (Hood et al. 2011), although 

Cycle Atlanta was substantially updated to make better use of current features available in iOS 

and Android as well as to include features that the City and local bicycle advocacy groups 

wanted in the application. The basic feature is trip recording, where the application uses the GPS 

of the phone to record the location of the user once per second. In addition to tracking cyclists' 

trips, the app also provides options to enter personal information, including age, email address, 

gender, ethnicity, home income, zip codes (home, work, and school), cycle frequency, rider type, 

and rider history (Misra et al. 2014).  

The breakdown of age, gender, income, and ethnicity was kept similar to the breakdown 

as found in the household travel survey. The age and income intervals as well as the gender and 

ethnicity subcategories were adopted from the household travel survey conducted by Atlanta 

Regional Commission (www.atlantaregional.com/transportation/travel-demand-

model/household-travel-survey). The rider type and rider history categories are exclusive and 

unique to the design of Cycle Atlanta. The cycling experience field allowed users to specify how 

long they have been cycling and can choose from the categories ‘since childhood’, ‘several 

years’, ‘one year or less’ and ‘just trying it/just started’.  

http://www.atlantaregional.com/transportation/travel-demand-model/household-travel-survey
http://www.atlantaregional.com/transportation/travel-demand-model/household-travel-survey
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As of June 2014, the Cycle Atlanta dataset consisted of 1529 unique users who could 

provide information on their age, gender, ethnicity, income, rider history and cycling frequency. 

Because there were only 6 cases in the age group of 65+, that group was merged with the age 

group of 55-64 years old and the new group is referred to as “age 55+” for the rest of the 

analysis.  About 60% of the riders provided information on each of the socio-demographic 

categories. The users of Cycle Atlanta are predominantly male (about 75%), white (about 80%) 

and mostly from a high income group (>$75,000) (about 45%). Table 1 presents the basic 

statistics of the different socio-demographic variables considered in this study. The median age 

of the users is between 25-34 years, while the median income is between $60,000 and $74,999. 

The median rider type is an enthused and confident rider with median cycling frequency of 

several times per week and a median riding history of several years.   

 Analysis and Results 

The goal of this part of the study was to understand the relationship between cyclist self-

classification into different rider types and the socio-demographic make-up and riding pattern of 

the cyclists.  

Multivariate Analysis 

Except for ethnicity and gender, the socio-demographic variables considered in this study 

have an underlying order, although they are categorical. This led us to use methods and analyses 

relevant to ordinal variables instead of nominal variables. To understand degree of association 

between variables, polychoric correlation was used, which assumes an underlying continuous bi-

variate normal distribution for discrete categorical variables with an ordinal scale. Figure 12 

shows the correlation coefficients obtained from the analysis. Age and income are correlated 



    
 

84 

 

with a measure of correlation in the range of 0.5. Rider type is correlated with gender, cycling 

frequency, and rider history, each with a correlation ~ 0.35.  

Figure 13 shows the percentage of rider types across the different socio-economic 

variables as well as rider history and frequency. As hypothesized, higher proportions of strong 

and fearless and enthused and confident riders are in the age groups below 35 years and are 

male. They are also disproportionately present in high income groups, indicating that people in 

those income groups are possibly more confident and aggressive than those in other income 

groups. Cyclists with a history of less than a year are more represented in the comfortable and 

cautious and the interested but concerned groups than any other group. Among infrequent 

cyclists, a high proportion of people consider themselves to be  either comfortable but cautious 

or interested but concerned riders. 
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Table 1. Basic Statistics for Socio-demographic Variables 

 

 

Age(n = 1001) Count Percentage

Less than 18 6 0.6

18-24 110 10.99

25-34 448 44.76

35-44 218 21.78

45-54 144 14.39

55-64 66 6.59

65+ 9 0.9

Gender(n = 981)

Female 240 24.46

Male 741 75.54

Income(n = 776)

Less than $20,000 78 10.05

$20,000 to $39,999 133 17.14

$40,000 to $59,999 111 14.3

$60,000 to $74,999 95 12.24

$75,000 to $99,999 112 14.43

$100,000 or greater 247 31.83

Ethnicity(n = 955)

African American 46 4.82

Asian 43 4.5

Hispanic / Mexican / Latino 53 5.55

Multi-racial 22 2.3

Native American 3 0.31

Pacific Islander 2 0.21

White 770 80.63

Other 16 1.68

Cycling Frequency(n = 546)

Daily 158 28.94

Several times per week 260 47.62

Several times per month 113 20.7

Less than once a month 15 2.75

Rider Type(n = 989)

Strong & fearless 187 18.91

Enthused & confident 443 44.79

Comfortable, but cautious 333 33.67

Interested, but concerned 26 2.63

Rider History(n = 985)

Just trying it out / just started 59 5.99

One year or less 120 12.18

Several years 330 33.5

Since childhood 476 48.32

Socio-demographic Variables(n = 1529)
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Figure 12. Measure of Association between Variables 
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Figure 13. Socio-demographic and Riding Pattern Distribution of Cyclists across Rider Types 

 

Logistic Regression Models 

Two main types of variables were used in these models – the socio-demographics and the 

riding habit/pattern of the participant. The socio-demographic variables included age, gender, 

income, and ethnicity while the riding pattern variables included cycling frequency and rider 

history. From the distribution of age and gender across rider type, it was evident that there were 

very few participants in the age group above 45. So the age groups 45-54, 55-64 and 65+ were 

grouped into one category of 45+. The riding pattern was found to be distinctly similar across the 

age group of 25-34 years and 35-44 years and hence, these two groups were also merged to form 

a new group of 25-44 years. Similarly, different income categories were consolidated into 3 

categories, and different ethnicity types were consolidated into 4 categories. For rider history, the 
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‘just started’ category was merged with the ‘less than a week’ category, resulting in 3 categories 

instead of 4.  

Of the total 989 users who provided data on rider type, only 26 users classified 

themselves as interested but concerned. Cross tabulation of rider type across other variables 

showed interested but concerned riders having zero cell values with cycling frequency ‘less than 

once a month’ and small valued cells for age group 45+ (2 users) and ethnicity ‘African 

American’(1 user) and ‘Other’(1 user) thereby presenting a problem of quasi separation. Within 

cycling frequency also, there are only 13 users who have cycling frequency less than once per 

month and none of them are enthused and confident riders (0 users) which again presented the 

issue of separation. Quasi/complete separation implies a perfect prediction scenario where the 

dependent variable Y can be completely predicted by variable X when the separation is 

complete. In case of quasi complete separation, perfect prediction happens only for a subset of 

observations (Albert and Anderson 1984). For example, in this dataset, it can be predicted with 

absolute certainty that none of the riders who bicycle less than once per month will classify 

themselves as enthused and confident, although the same cannot be said about whether riders 

with cycling frequency less than once a month will classify themselves as strong and fearless or 

comfortable but cautious. Models estimated under quasi/complete separation are more likely to 

either not converge or give high co-efficient estimates and infinite standard error as the log-

likelihood will be presumably flat (Zorn 2005). The most common way of dealing with quasi 

separation is to remove the problematic covariate which again might give specification bias if the 

covariate is strongly correlated. We ran models both by removing observations and by 

aggregating the sparsely populated group with its nearest neighbor. In case of cycling frequency, 

the last group, cycling frequency less than once per month was merged with the group which 
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bicycles a few times per month, and the new group was named cycling frequency once or less 

per week. Models ran by removing the observations with cycling frequency less than once per 

month gave a much lower model fit than the aggregated models and hence, in this paper, models 

with aggregated data are presented. Similarly, for addressing the quasi separation problem 

related to rider type, two alternative model sets were designed – one where the interested but 

concerned group (26 users) was merged with its next higher group comfortable but cautious (333 

users) and another where the interested but concerned users were removed from the sample 

space and models were estimated for the remaining three categories. The model estimates in 

either case were not significantly different and in keeping with our aggregation theme, in this 

report, the aggregated models are presented. 

Based on these rider type distributions, logistic regression models were estimated for 

each rider type to understand how the self-described confidence level is affected by socio-

economic variables as well as riding patterns of the cyclists. Several logistic regression models 

were explored to find the best way to represent the pertinent relationships. Since cycling 

frequency and rider type may have bi-directional causality, they were tested for explanatory 

power and likely association. A single variable ordinal model for rider type with cycling 

frequency as the explanatory variable gives a McFadden’s ρ
2
 of 0.48, but an ordinal model for 

cycling frequency with rider type as the explanatory variable gives a McFadden’s ρ
2
 of 0.07 

(both unadjusted for sample size difference).  Although it was found that cycling frequency has a 

greater explanatory power for rider type than rider type has for cycling frequency, in view of the 

simultaneity issue, models with cycling frequency and models without cycling frequency are 

both presented here.  
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Since the discrete observed rider type categories (y) were originally thought of as 

representing a latent continuous scale of confidence and comfort (y*), two variations of the 

user’s underlying decision process along that one dimensional scale were initially estimated. The 

first is where the self-classification process was thought of as representing a binary choice for 

each rider type (for example, “Am I strong or fearless or not?”). This process was estimated 

using binary logistic regression models where the rider classifies himself/herself into a category 

(y = 1) if he/she perceives himself/herself above a certain confidence level threshold (y*> τ); if 

the perceived confidence level is at or below the threshold (y*≤τ), the rider does not choose that 

rider type category (y = 0). Four different binary logistic models were estimated – one for each 

rider type. For each of these four choices, several models were run with different variable 

combinations to balance model fit and parsimony. Age group 45+, gender male, income less than 

$40,000, rider history since childhood, and cycling frequency of daily were chosen to be the base 

categories for age, gender, income, rider history and cycling frequency variables respectively. 

Ethnicity was not included in the models due to its heavy bias towards white riders. Model fit 

statistics were calculated based off the corresponding equally likely model statistics (Mokhtarian 

2016). In addition, even when not significant, variables with t-statistic >1 were kept in the 

models.  

The first models were run with age and gender as explanatory variables which gave 

model fits in the range of 0.2 - 0.3 (with base equally likely). Age group 25-44 and gender were 

significant for strong and fearless group and for the group including comfortable but cautious 

and interested but concerned. At the second stage, income was added to age and gender. While 

income itself was not significant, McFadden’s ρ
2
 for these models ranged between 0.3 and 0.45 

although the sample size reduced to 932 from 742. Walden’s t-test did not show significance of 
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the income variable (p = 0.94, 0.32). Since the correlation between age and income was earlier 

found to be high (0.53), at the next step, an interaction term between age and income was 

introduced in the model. However, the model fit was not found to be significantly different from 

the previous model. In addition, introduction of interaction term led to perverse signs for the 

income variable. Therefore, age and income were included in the model as separate variables.  

Since models with age and income gave a better fit, we tested these models for multi-collinearity 

effect. The VIF (Variation Inflation Factor) test was performed on a linear version of the models, 

and the VIF was found to be less than 5 for all variables including income.  

Rider history was added to the model at the next step and was found to be significant 

across all the models. Wald’s test as well shows that rider history is a significant variable (p = 

3.2 e-09) for the model. At this stage, the ρ
2
 values for the models range between 0.4 and 0.5, 

and both age groups and gender are significant across the strong and fearless and the 

comfortable but cautious and interested but concerned group. Rider history is the only 

significant variable for the enthused and confident group at this stage. Cycling frequency was 

added at the last step of model building and was found to be significant by Wald’s test (p = 

0.013). McFadden’s ρ
2
 values for the models with cycling frequency are ~0.7 (with base equally 

likely). Since the model fits were quite high, it was hypothesized that cycling frequency 

determines, to a large extent, the propensity of a cyclist to self-classify himself/herself into a 

particular category. However, at this stage, model sample sizes were ~ 33% of the original 

sample sizes mainly because of missing data on income and cycling frequency. Since income 

was insignificant in all models, a final model was designed by removing income but leaving in 

cycling frequency which brought back the sample size ~ 50% of the original. The ρ
2 

for this 

model was found to be slightly lower than the earlier model, but in absence of income, age group 
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25-44 was found to gain significance. Age, gender, rider history, and cycling frequency were 

found to have significant influence on whether a cyclist classifies himself or herself into the 

categories of strong and fearless as well as comfortable but cautious and interested but 

concerned. The only significant predictor for the enthused and confident group was found to be 

cycling frequency and therefore, a model with only rider history and cycling frequency was built 

for this group and the  ρ
2  

was found to be  ~ 0.6. A model with cycling frequency as the only 

exogenous variable was found to provide a ρ
2
 of 0.48 indicating that the propensity of cyclist 

classifying himself/herself into the enthused and confident category is well specified by his/her 

cycling frequency alone.  It may therefore be suggested that cyclists who self-classify themselves 

into this category mostly do so because of their riding frequency rather than their self- perception 

on a confidence scale. As mentioned earlier, for all the categories, two final models are 

presented: one without cycling frequency and one with cycling frequency. Table 2a presents the 

model results for binary logistic models. 

The second variation on user’s decision process was modeled using ordinal logistic 

models where the riders are thought of as classifying themselves into different categories (y) 

based on ordered partition of a latent continuous one dimensional confidence scale(y*) (y = k, if 

τk-1<y*≤ τk where k = rider type categories in an ordered scale of 1 through 4, with 1 being least 

confident and 4 being most confident). The model building exercise was the same as that for 

binary models and the results for the ordinal models are presented in Table 2b. 

Both the binary and ordinal logistic models are parsimonious and efficient as the choice 

is modeled on a single dimensional latent continuous variable. However, as mentioned by Bhat 

and Pulugurta (1997), it might be oversimplification of the actual decision process where the 

user is actually choosing among many alternatives the one alternative that he/she feels best 
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satisfied with. In this case, the user has a k-dimensional choice space where k represents the 

number of choices faced by the user and estimating an unordered response using an ordered 

response model can lead to biases in estimating probability of the choices (Bhat and Pulugurta 

1997, Amemiya 1985). Therefore, the next set of models estimated were multinomial logistic 

regressions where the user was thought of as having to choose between the four rider type 

categories simultaneously (“Am I strong and fearless or enthused and confident or comfortable 

but concerned, etc.”).  The same model building exercise was followed in this case as with the 

binary logit models with the comfortable but cautious category treated as the base category. The 

first model included only age and gender and gave a McFadden’s ρ
2
 of 0.15. The final model, 

without income, included age group 18-24 and 25-44, gender, rider history, and cycling 

frequency and gave a McFadden’s ρ
2
 of 0.6. The model with income and cycling frequency gave 

a model fit of 0.7 (unadjusted for model sample size). Age group 25-44 was found to be 

significant for the enthused and confident group when base group was changed to age group 18-

24 indicating that cyclists in the age group of 25-44 behave significantly different in self- 

classifying themselves into enthused and confident group as compared to the age group 18-24.  

Chi-squared tests for model comparisons could not be performed due to unequal sample sizes. 

Models with cycling frequency gave a higher McFadden’s ρ
2 

than the models without cycling 

frequency but were estimated on a much smaller sample size, potentially removing a 

considerable amount of variation present in the dataset that was used for estimating the other 

models. Therefore, it cannot be definitively concluded that the models with cycling frequency 

are better models than their counterparts and hence, both types of models are presented in this 

report. The multinomial logistic (MNL) models are presented in Table 2c. Table 3 presents the 

odds ratio for the multinomial and the ordinal models both with and without cycling frequency. 
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Table 2(a). Binary Logistic Regression Models  

 

 

  

 Model 1 

N= 740

Model 2 

N= 496

 Model 1 

N= 740

Model 2 

N= 499

 Model 1            

N= 740

Model 2             

N= 496

Intercept

0.239*** 

(5.832)

0.329 *** 

(6.846)

0.468 *** 

(8.929)

0.531 *** 

(11.406)

0.293 *** 

(6.077)

0.167 ** 

(2.832)

Age

18-24
0.102 . 

(1.763)

0.0267 

(0.429)

-0.082          

(-1.112)

-0.02                    

(-0.286)

-0.05                   

(-0.654)

25-44
0.11** 

(2.986)

0.066 . 

(1.665)

-0.002                

(-0.05)

-0.108 *              

(-2.475)

-0.1 *                

(-1.978)

Gender

Female
-0.155***    

(-4.618)

-0.168 *** 

(-4.452)

0.01   

(0.243)

0.145 *** 

(3.467)

0.158 *** 

(3.428)

Income

Income>= $75,000
0.007   

(0.248)

-0.045        

(-1.142)

0.037                            

(1.03)

Rider history

One year or less
-0.235***          

(-5.779)

-0.169 *** 

(-3.644)

-0.14 **       

(-2.685)

-0.097       

(-1.573)

0.375 *** 

(7.81)

0.269 *** 

(4.733)

Several years -0.143***    

(-4.512)

-0.135 *** 

(-3.62)

0.081 * 

(1.982)

0.063 

(1.258)

0.063 .                 

(1.671)

0.069                   

(1.503)

Cycling Frequency

Several times/week
-0.071 .      

(-1.792)

-0.08          

(-1.517)

0.144 **             

(3.0)

Once or less/week  -0.181 *** 

(-3.88)

-0.183  ** 

(-2.965)

0.357 *** 

(6.252)

Market Share of Group in the 

Model Dataset

150 

(20.27%)

90 

(18.15%)

328 

(44.32%)

226 

(45.29%) 262 (35.44%) 180   (36.29%)

Market Share of Other Groups 

in the Model Dataset 590 406 412 273 478 316
McFadden's ρ2 (Full model, 

base EL) 0.368 0.630 0.460 0.636 0.473 0.660

McFadden's ρ2 (MS model, 

base EL) 0.177 0.177 0.292 0.292 0.251 0.251

LL(0) -536.232 -536.232 -967.031 -967.031 -876.397 -876.397

LL(MS) -441.357 -441.357 -684.42 -684.42 -656.533 -656.533

LL(Full Model) -339.0786 -198.181 -522.546 -352.327 -462.058 -298.22

G2=-[2(LL(Null)-LL(Full Model))] 394.3068 676.102 888.97 1229.408 828.678 1156.354

Model Statistics

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Base: Age 45+

Base: Male

Base: Income < $75,000

Base: Since Childhood

Base: Daily

Co-efficients
Strong and Fearless

Enthused and 

Confident

Comfortable but Cautious & 

Interested, but concerned

Estimates Estimates Estimates

(t-stat) (t-stat) (t-stat)
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Table 2(b). Ordinal Logistic Regression Models  

 

  

 Model 1             

N= 740

Model 2              

N= 496

-0.938 ***            

(-4.53)

-1.755 ***               

(-6.357)

1.26 ***                 

(6.005)

0.692 **               

(2.62)

Age 18-24
0.316                    

(1.065)

0.151           

(0.451)

0.622 **                  

(3.357)

0.448 *                

(2.072)

-0.823 ***             

(-4.847)

-0.939 ***               

(-4.546)

Income >= $75,000
-0.058                    

(-0.385)

-1.791 ***             

(-8.127)

-1.388 ***               

(-5.209)

-0.554 **               

(-3.532)

-0.596 **                 

(-2.994)

-0.638 **                  

(-3.045)

 -1.68 ***                 

(-6.361)

0.093 0.093

0.33 0.58

LL(Null Model) -1086.527 -1086.527

LL(MS Model) -985.081 -985.081

LL(Full Model) -723.306 -459.281

G2(Full Model, base EL) 726.442 1254.492

Several times per month

Model Statistics

McFadden's ρ2 (MS model, base EL)

McFadden's ρ2 (Full model, base EL)

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

One year or less

Several years

Cycling Frequncy Base: Daily

Several times per week

Female

Income Base: Income < $75,000

Rider History Base: Since Childhood

Enthused and confident|Strong and 

Fearless

Age Base: Age 18-24

Age 25-44 

Gender Base: Male

Co-efficients

Estimates                                                                                          

(t-stat)

Intercepts

Base: Comfortable,but cautious & 

Interested, but concerned

Comfortable, but cautious & 

Interested, but concerned| Enthused 

and confident
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Table 2(c). Multinomial Logistic Models 

  

 Model 1         

N= 740

Model 2         

N= 496

 Model 1 

N= 740

Model 2     

N= 496

0.51*                

(2.09)

1.183 ** 

(3.546)

Strong and Fearless
-0.274           

(-0.84)

0.829 * 

(1.933)

-0.122               

(-0.355)

0.202 

(0.513)

0.363 

(1.392)

0.297 

(0.519)

0.348 .             

(1.6)

0.394 . 

(1.576)

0.945 ** 

(3.149)

0.731* 

(2.041)

-0.413*           

(-2.14)

 -0.478 *           

(-2.072)

-1.64 ***   

(-4.833)

 -2.199 ***    

(-4.39)

Income >= $75,000
-0.221              

(-1.19)

-0.1                

(-0.421)

-1.305 ***     

(-5.38)

-1.053 **    

(-3.576)

-2.61 ***   

(-6.09)

 -2.07 ***      

(-4.176)

-0.061                

(-0.315)

 -0.156           

(-0.648)

-0.921**     

(-3.675)

 -1.077 **          

(-3.135)

 -0.771 **     

(-2.767)

 -0.954 **     

(-2.789)

-1.556 ***   

(-4.949)

 -2.547 ***    

(-5.305)

0.09

0.34 0.58

LL(Null Model) -1080.56 -1080.56

LL(MS Model) -985.08 -985.08

LL(Full Model) -716.136 -452.958

G2(Full Model, base EL) 537.89 1064.24

Model Statistics

McFadden's ρ2 (MS model, base EL)

McFadden's ρ2 (Full Model, base EL)

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Several years

Cycling Frequncy Base: Daily

Several times/week

Once or less/week

Income Base: Income < $75,000

Rider History Base: Since Childhood

One year or less

Age 18-24

Age 25-44 

Gender Base: Male

Female

Intercepts Base: Comfortable, but cautious & Interested, but concerned

Enthused and Confident

Age Base: Age 45+

Co-efficients

Enthused and confident Strong and fearless

Estimates                                                            

(t-stat)

Estimates                                                            

(t-stat)



    
 

99 

 

Table 3. Odds Ratio for Multinomial and Ordinal Models with and without Cycling Frequency  

 

 

  

Overall, some distinct patterns were visible across all the models that we experimented 

with:  

(1) Gender was significant in all the models with a negative sign implying that female 

cyclists are more likely to classify themselves into low comfort low confidence groups. 

The negative coefficients increase in value as we move from the comfortable but cautious 

and interested but concerned group to strong and fearless group which strengthens the 

previous inference. For the ordinal logit models, the odds ratio is ~ 0.4 which means that 

being female decreases the probability of being in higher confidence groups by about 

half. From the MNL models, being a female rider decreases the chance of being an 

enthused and confident rider as compared to comfortable but cautious rider by more than 

Enthused 

and 

confident

Strong 

and 

fearless

Enthused 

and 

confident

Strong 

and 

fearless

Age 18-24 0.884 1.89 1.223 1.345 1.372 1.163

Age 25-44 1.416 2.574 1.482 2.077 1.863 1.565

Gender 0.66 0.193 0.62 0.11 0.439 0.39

Income > = $75,000 0.8 0.904 0.943

Rider history less than a 

year 0.27 0.0735 0.349 0.126 0.167 0.249

Rider history several 

years 0.94 0.398 0.859 0.341 0.575 0.551

Cycling frequency 

several times per week 0.462 0.385 0.529

Cycling frequency once 

or less per week 0.211 0.078 0.186

MNL Model 1 Ordinal 

Model 1

MNL Model 2 Ordinal 

Model 2
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30% while the chance of being a strong and fearless rider as compared to comfortable 

but cautious rider is decreased by about 80%. 

(2) Cyclists in the age group of 25-44 and 18-24 are more likely to be more confident riders 

than the cyclists in the age group of 45+. From the ordinal model without cycling 

frequency, cyclists in the age group of 25 to 44 are ~ 86% more likely to classify 

themselves into more confident categories as compared to the cyclists in the age group of 

45+ while from the model with cycling frequency, riders in the age group of 25-44 are 

about 56% more likely to classify themselves into higher confidence groups; cyclists in 

the age group of 25-44 are also more likely to classify themselves into higher confidence 

groups than cyclists in the age group of 18-24. This may be due to the inherent construct 

of the dataset where most users in the age group of 18-24 are students and use bicycle 

because they do not have access to a car. Intuitively, they may be less bicycle enthusiasts 

than riders in the age group of 25-44, who, being in the higher income group (also a 

construct of this dataset), may have access to an automobile but still choose cycling as a 

mode of commute. 

(3) Income is not significant but income greater than $75,000 is positively related to 

classifying oneself into strong and fearless and the comfortable but cautious and 

interested but concerned group and is negatively related to classifying oneself into 

enthused and confident group.  

(4) Riders with more experience are likely to be more confident as is captured by the 

negative coefficients of rider history of several years and rider history of one year or less 

as compared to the riders riding from childhood. Riders in the several years category 



    
 

101 

 

show odds ratios of 0.55 and 0. 57 for the ordinal model implying that such riders are 

~45% less likely to be as confident as the riders riding from childhood while following 

the same logic, the new riders are ~75-85% less likely to be as confident as those riding 

from childhood. 

(5)  Cycling frequency is a significant determinant of rider type, and higher frequency of 

cycling implies a more confident cyclist. Cyclists with cycling frequency several times 

per week and cycling frequency once or less per week are both less likely to be more 

confident than cyclists with cycling frequency daily. However, the magnitude of the 

coefficient is higher in the once or less per week category than several times per week 

implying that cyclists in that category are even less likely than the cyclists in the several 

times per week category to be more confident riders.  Cyclists who bicycle several times 

per week are about 50% less likely to rate themselves into higher confidence categories 

than riders who bicycle daily. Similarly, cyclists with cycling frequency once or less per 

week are about 80% less likely to classify themselves into higher confidence categories 

as compared to daily cyclists. 

(6) Since the ρ
2
 are similar across binary, multinomial, and ordinal models, it is difficult to 

justify the use of any one particular type of model for the purpose of cyclist classification. 

However, ordinal models impose an inherent restriction on the estimation process by 

assuming that the effect of the explanatory variables are the same at different category 

levels, i.e., how gender influences in self-classifying someone as a comfortable but 

cautious rider rather than an enthused and confident rider is the same as the influence of 

gender on being enthused and confident rather than strong and fearless. This may not 

hold true if the perceived difference in confidence between being strong and fearless and 
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enthused and confident is smaller than the difference between comfortable but cautious 

and enthused and confident.  Gender may have a much more pronounced effect on 

choosing whether a rider is comfortable but cautious as compared to enthused and 

confident than in choosing between strong and fearless and enthused and confident rider 

type. Therefore, conceptually, MNL models seem to be more appropriate for the purpose 

of this research. 

PART 2: Understanding Infrastructure Preference of Cyclists 

In addition to the influence of socio-demographics on cyclist types, it is important to 

understand how cyclist type influences preferences for infrastructure. The basic premise of this 

part of the research is to understand whether route preference is perception dependent and if that 

perception is a construct of the socio-demographic background of the cyclist. Based on model 

results presented in the first part of this paper, we hypothesized that female riders and riders in 

the age group above 44 years are more likely to prioritize safety over shortest route. Based on 

literature review (Hood et al. 2011, Sener et al. 2004), we also hypothesized that route 

impediments like high slope or poor pavement conditions are more likely to deter female cyclists 

from choosing that route.  

Data Source: Cycle Atlanta User Survey and Atlanta Regional Commission Survey 

The second part of the study is based on an online survey that was conducted among the 

users of the Cycle Atlanta application in the spring of 2014.  The survey was sent to current 

application users via email addresses provided on the same user information screen asking 

demographics questions. The survey was divided into a few segments: (i) users’ feedback on the 

Cycle Atlanta application, (ii) user feedback on the level of civic engagement and public 

participation in planning achieved through the Cycle Atlanta application, (iii) user feedback on 
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which factors made them more likely to choose cycling as a mode of transport and (iv) socio-

demographic and cycling related information of the respondents including self-classified rider 

type. The survey was sent to 697 application users and the particular question considered for this 

part of the analysis had 127 responses, a response rate of approximately 18%. 

To increase the number of observations for this analysis, we appended the Atlanta 

Regional Commission’s Bicycle User survey dataset to the existing Cycle Atlanta survey dataset. 

Both the Cycle Atlanta survey and the regional bicycle user survey were web based surveys 

advertised through the same channels – the Cycle Atlanta survey was designed in accordance 

with the regional survey to preserve the comparability of the datasets. Since the regional survey 

went out to all the bicyclists in the Atlanta region, there is a possibility that it would include the 

Cycle Atlanta users as well and some respondents may be present in both the datasets. Euclidean 

distance matrices, which quantify the dissimilarity between rows of sample data, were calculated 

individually for the Cycle Atlanta and the regional survey data and also after appending the 

datasets. The distance measures were found to be similar for both the cases and therefore, it was 

assumed that even though combining the two datasets may result in some data overlap, it will not 

significantly affect the results and the interpretation of the results. In addition, to maintain 

compatibility with Cycle Atlanta users, only the bicyclists in the regional survey having access to 

smartphones were included in the analysis. The non-smartphone respondents in the regional 

survey were instead used to verify that smartphone ownership does not bias results. Figure 14 

shows the sociodemographic distribution of the pooled survey respondents across different rider 

types. 
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Figure 14. Socio-demographic Distributions of Pooled Survey Respondents across Rider Types 

 

Table 4. Means and Standard Deviations of Item Responses on Road Conditions and Facilities by 

Rider Type 

 

Conditions

Mean 

Ratings

Std. 

Deviation

Mean 

Ratings

Std. 

Deviation

Mean 

Ratings

Std. 

Deviation

Mean 

Ratings

Std. 

Deviation

Bike Lane 3.13 2.02 3.41 2.08 3.47 2.02 3.29 1.89 ***

Separate Path 3.00 1.98 3.39 2.09 3.65 2.08 3.72 2.00 ***

Heavy Traffic 1.44 1.35 1.07 1.25 0.64 1.10 0.43 0.98 ***

High Speed 1.03 1.28 0.60 1.08 0.47 0.96 0.31 0.83 ***

Safe Routes 3.06 2.08 3.08 2.12 3.04 2.10 2.78 2.10 *

Directness 3.03 1.96 2.98 1.93 3.07 1.95 3.18 2.03

Poor Pavement 1.57 1.31 1.42 1.21 1.20 1.25 1.11 1.25 ***

Steep Hill 2.31 1.43 2.16 1.41 1.85 1.40 1.28 1.22 ***

Parked car 2.23 1.26 2.18 1.20 1.97 1.25 1.68 1.24 ***

Traffic Signal 2.15 1.28 2.20 1.22 2.00 1.34 1.79 1.45 *

Attractive Scenery 2.82 1.83 2.86 1.76 2.96 1.78 2.84 1.79

Significance in 

difference in 

mean scores 

(ANOVA)

Responses were coded as a five point Likert scale (Much less likely =1, Much more likely = 5).

Scores higher than 3.00 indicate a preference for that facility or condition while scores less than 3.00 

indicate a negative impact of that facility or condition on choosing bicycling as an option.                    

*** indicates significance at 0.001 level, ** indicates at 0.01 level, and * indicates significance at 0.05 

level.

Note:

Strong and 

Fearless

Enthused and 

Confident

Comfortable but 

Cautious

Interested but 

Concerned
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Table 5.  p–values for Pairwise t-test on Respondents’ Ratings on Influence of Road Conditions and 

Facilities on Bicycling Propensity, Paired by Rider Type    

     

Note: Rider Type: SF = Strong and fearless, EC = Enthused and confident, CC = Comfortable, but 

cautious, IC = Interested, but concerned. Each cell value represents p-value for pairwise t-test between 

the row-column pair of rider type. Significant values are marked in bold. 

Basic Statistics 

In both the surveys, the respondents were asked to indicate on a five point scale of less 

likely to highly likely, how the presence of route choice related factors may influence their 

decision to choose bicycling as a mode of transportation. The mean scores and standard 

deviations of each option were further calculated for each rider type and are shown in Table 4 

along with the significance in difference of scores across rider types. Scores higher than 3.00 

indicate a preference for that facility or condition while scores less than 3.00 indicate a negative 

impact of that facility or condition on choosing bicycling as an option.  
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In general, bike lane and separate paths have a very high score across all rider types 

implying that all riders prefer dedicated facilities. Although this is generally not surprising, it is 

counter to the opinions expressed by some vehicular cycling enthusiasts (Forester 2012). 

Similar high scores are noted for safety and directness indicating that dedicated bike facilities 

along shortest routes are preferred by all riders. Negative conditions like poor pavement, steep 

hills, parked cars, and traffic signals negatively affect the decision to bicycle, but to a much 

lesser degree than traffic speed and volume. Traffic stress stands out as the most deterring factor 

preventing people to decide in favor of bicycling.  

While average scores for individual conditions and facilities are mostly similar across 

the first three rider types, an ANOVA done on the scores show significant difference across 

rider types. To understand which groups actually differed significantly, a pairwise t-test was 

conducted.  The p-values are shown in Table 5. For neighboring categories, there is no 

significant difference in mean scores across rider types strong and fearless and enthused and 

confident for any item while interested but concerned and comfortable but cautious groups have 

significant difference for traffic speed and separate facilities. There is significant difference 

across groups particularly for heavy traffic, high speed, poor pavements, steep hills and parked 

cars. There is no significant difference in item scores for directness of route and attractive 

scenery on route.   

Further exploratory analysis was performed to validate the hypothesis that reported 

preference of infrastructure and facilities depends on the socio-demographic attribute of the 

users. First, a factor analysis was performed to group the 10 road conditions and facility 

preferences into fewer factors. Then, regression analyses were done with each factor as the 
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dependent variable and the sociodemographic attributes of the respondents as the explanatory 

variables.  

 Factor Analysis 

Factor analysis is used to address underlying correlation among all or some of the 

observed variables such that there will be multi-collinearity issues if the variables are treated 

individually in the data (Thompson 2004, Hurley et al. 1997). Factor analysis, thus, helps in 

reducing the dimensionality of the dataset as well as in identifying the correlated structure of 

observed variables. For example, among the 10 variables influencing the decision to bicycle, 

high traffic speed and heavy traffic volume may be correlated (that is people who are averse to 

high traffic speed are also likely to be averse to heavy traffic volume). By using factor analysis, 

we may be able to group these two variables together to form a new factor variable which can 

then be used for regression.  This will reduce the number of variables from 10 to 9 and will 

remove the collinearity that would occur if both the variables are treated separately in 

regression.  

Factor analysis can be exploratory or confirmatory, the latter being used to test a pre- 

determined hypothesized correlation among some of the variables (Hurley et al. 1997). In our 

case, no correlation structure was initially hypothesized, and hence, an exploratory factor 

analysis was performed. The variables were allowed to load into all factors, irrespective of their 

score, and an orthogonal rotation was used. A scree plot was used to determine the optimum 

number of components; and two models, one with two factors and another with three factors, 

were tested. The three factor model was used for further analysis. Table 6 presents the results of 

the three factor model. 



    
 

109 

 

Table 6. Exploratory Factor Analysis: Loadings 

 

  

Table 6 shows that factor 1 has high loading on bike lanes, separate paths, safe route, directness, 

and attractive scenery. This factor was named Protected Environment as the preference of 

people scoring high on this factor appears to be direct and safe facilities. The second factor has 

moderately high scores on steep hills, parked cars and traffic signals and was therefore named 

Route Impedance implying that people who score high on this factor prefer routes with less 

disruption. The third factor has the highest loading on heavy traffic and high traffic speed and 

was named Route Stress indicating that people who score high on this factor are averse to traffic 

stress: their decision to bicycle is largely determined by the traffic speed and volume in the 

corridor. 

Regression Analysis 

In the second stage, to understand if sociodemographic attributes of riders influence the 

infrastructure preference, the three factors were used in regression equations with age, gender, 

Loadings: Factor1 Factor2 Factor3

Bike lanes 0.884 0.337

Separate paths 0.89 0.316

Safe route 0.767 0.389

Directness 0.797 0.357

Attractive scenery 0.76 0.405

Steep hills 0.445 0.577

Parked cars 0.43 0.714

Traffic signals 0.443 0.645

Heavy traffic 0.778

High traffic speed 0.782

Poor pavement 0.399 0.42 0.386

Factor1 Factor2 Factor3

Sum of Square loadings 4.173 2.164 1.763

Proportion Var 0.379 0.197 0.16

Cumulative Var 0.379 0.576 0.736
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income, and rider type as explanatory variables and the factors as the dependent variables. Table 

7 provides the details of the regression analysis.  

For the Protected Environment factor, gender, income, and rider type are significant 

implying that females and those in high income groups prefer facilities. The rider type variable 

has a negative coefficient indicating that people with lower confidence levels prefer separate 

facilities. Both Route Impedance and Route Stress are factors with negative connotations and 

the regression results should be interpreted accordingly. Age, income, and rider type are 

significant for the Route Impedance factor, which includes steep hills, parked cars, and delayed 

traffic signals. Age shows a negative sign implying that older riders have a stronger aversion to 

route impedances like steep hills or parked cars, while rider type shows a positive coefficient 

implying that less confident riders are more averse to route impedance.  

For the Route Stress factor, age, gender, income, and rider type are significant variables. 

Age, gender, and income have negative coefficients while rider types has a positive coefficient. 

The result can be interpreted as older and female riders, as well as riders in the high income 

group, are less likely to decide to bike under traffic stress while riders in the low confidence 

category are also deterred from bicycling because of high traffic speed and volume. 

It should however be noted that all the regression models have low R-squared values, 

ranging from 0.04 (Protected Environment and Route Impedance) to 0.1(Route Stress). 

Therefore, while it can be implied that infrastructure preference affects the decision to bicycle 

differently for older, female, and less confident riders, it is also imperative that there are other 

factors that influence the decision to bicycle which are not included in these models.  
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Table 7. Regression Analysis for Protected Environment, Route Impedance and Route Stress  

 
 Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

DISCUSSION OF RESULTS 

 A substantial component of the self-classification of rider types may be correlated with 

the socio-demographic make-up of a cyclist. In particular, gender and age have a demonstrated 

effect on an individual’s attitude towards safety, comfort, and confidence. Studies on the effect 

of gender on confidence have shown that females are much less likely to undertake risky tasks 

and more likely to report themselves to be less confident than their male counterparts even when 

performing identical tasks (Kray et al. 2001). A study by Byrnes et al. (1998) showed that this 

gender gap increases with increasing age although the level of gap is decreasing over time. 

Emond et al. (2009) also emphasized the difference in individual and social perceptions between 

the two genders and its strong influence on self-efficacy.  

Estimate 

(t-stat)

Sig. Estimate 

(t-stat)

Sig. Estimate 

(t-stat)

Sig. Estimate 

(t-stat)

Sig. Estimate 

(t-stat)

Sig. Estimate 

(t-stat)

Sig.

(Intercept)

-0.304       

(-2.304) *

-0.964           

(-6.138) ***

0.48  

(3.702) **

-0.231       

(-1.488) .

0.172 

(1.595) .

-0.501         

(-3.888) **

Age

-0.106        

(-4.372) ***

 -0.085           

(-3.491) **

-0.082         

(-3.329) **

-0.066       

(-2.721) **

-0.047       

(-2.282) *

-0.029        

(-1.45) .

Gender

0.157              

(2.833) **

0.187 

(3.273) **

 -0.197       

(-3.547) **

-0.042       

(-0.744)

-0.077       

(-1.672) .

0.05 

(1.059)

Income

0.0723 

(3.791) **

0.062    

(3.323) **

-0.002        

(-0.1)

0.003 

(0.154)

0.010 

(0.658)

0.013 

(0.84)

Strong and 

fearless

0.443  

(4.735) ***

0.783 

(8.482) ***

0.677 

(8.829) ***

Enthused and 

confident

0.821  

(9.424) ***

0.476 

(5.527) ***

0.53 

(7.418) ***

Comfortable 

but cautious

0.8                  

(8.994) ***

0.28 

(3.189) ***

0.336 

(4.602) ***

Coefficients

Multiple R-

squared:  0.006,  

Adjusted R-

squared:  0.004

Multiple R-

squared:  0.076,   

Adjusted R-

squared:  0.071

F-statistic: 

2.503 on 3 and 

1170 DF,  p-

value: 0.0579

F-statistic: 16 on 

6 and 1167 DF,  

p-value: < 2.2e-

16

Protected Environment Route Impedance Route Stress

Multiple R-

squared:  0.019,     

Adjusted R-

squared:  0.016

F-statistic: 7.552 

on 3 and 1170 

DF,  p-value: 

5.26e-05

Multiple R-

squared:  0.116,    

Adjusted R-

squared:  0.111 

F-statistic: 25.48 

on 6 and 1167 

DF,  p-value: < 

2.2e-16

Multiple R-

squared:  0.030,   

Adjusted R-

squared:  0.028

F-statistic:  12.2 

on 3 and 1181 

DF,  p-value: 

7.261e-08

Multiple R-

squared:  0.084,   

Adjusted R-

squared:  0.08

F-statistic: 17.93 

on 6 and 1167 

DF,  p-value: < 

2.2e-16

Model 

Statistics
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This study was undertaken to provide a data driven answer to the question whether 

cycling infrastructure preference depends on the socio-demographic characteristics of the 

cyclists. We also aimed to validate the generalizability of the existing popular classification of 

cyclists based on their comfort and confidence level via information provided by the cyclists 

themselves. Results of our first analysis show that age, gender, and rider history influence self-

classification of the riders into rider types. Overall, the confidence and comfort level decreases 

with age and is significantly lower for female riders as compared to their male counterparts. 

Cycling frequency and riding history both have a significant role in determining rider type but 

are positive reinforcement only through an adoption phase. The binary logistic regression model 

fits are comparatively lower than the ordinal logistic and ordered probit models indicating the 

validity of an underlying scale of confidence and comfort in the construct of rider type 

categories. Future research should aim to validate the claim based on revealed preference route 

choice data. 

The purpose of the second part of the analysis was to understand if perceptions about 

route characteristics and safety are related to a cyclist’s sociodemographic make up and self-

perception as a particular rider type from a stated preference dataset and without any input from 

revealed route choice preferences. The results indicate a preference of dedicated facilities across 

all rider types and also point toward high speed traffic and high volume traffic as the factors that 

most negatively affect willingness to cycle. Further analysis reveals that female riders are more 

likely to prefer separate facilities while elderly riders are more likely to be averse to steep hills 

and other route impedance. Less confident riders prefer both separate facility and less 

impedance in their routes. Higher income riders prefer protected environments but are not as 
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deterred by presence of slopes or traffic signals on their routes. High traffic speeds and heavy 

traffic volumes deter females, older riders, and less confident riders from bicycling.  

LIMITATIONS 

The innovative use of smartphone based application to collect revealed preference cyclist 

route choice data has its own caveats. The Cycle Atlanta data suffer from the issues of self-

selection bias as it is a crowd sourced data collection system and people who participate are 

those who are sufficiently interested in the project, willing to share data, and invest time without 

any personal gain. As a result, the Cycle Atlanta dataset is heavily dominated by male white 

cyclists in the age group between 25-44 years. This is not a representative sample of the 

population of Atlanta where 50% of the population is female and about 54% is African American 

(ACS 2012). However, there is currently no reliable estimate on the makeup of the cycling 

population of Atlanta (Poznanski 2013), and hence it is difficult to comment on the 

representativeness of the Cycle Atlanta data with regard to the cycling population of Atlanta. We 

compared the sociodemographic distribution of the Cycle Atlanta users to the participants of the 

Atlanta Regional Commission data and found no statistically significant difference. While this 

may mean that the cycling population of Atlanta is fairly homogenous, it may also be due to the 

reason that Atlanta Regional Commission’s survey was advertised through pro bicycle channels 

that typically reach out to people with similar attitudinal preferences as the Cycle Atlanta users. 

It is an ongoing future research debate as to whether weighting the data by Atlanta population 

proportion should be considered as that may interfere with the representativeness of the collected 

data. 

The other issue associated with the data is that by design, the data systematically miss the 

cyclists who do not own a smartphone. A study on smartphone ownership (Windmiller et al. 
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2014) has shown that this systemic bias affects people in older age groups, certain ethnic groups, 

and sometimes people in lower income groups. The Cycle Atlanta dataset is sparse in all of these 

categories – the users are mostly White and high income in the age group of 25- 44. It is difficult 

to estimate how much of the sparsity is caused by use of smartphone for data collection and how 

much is due to characteristics that define cyclists of Atlanta. However, the number of non-

smartphone owning Atlanta Regional Commission participants and Cycle Atlanta participants 

were similar in number, therefore making up a similar portion of the sample. The models were 

run for the non-smartphone owners as a separate group and no statistically significant difference 

in infrastructure preference was noticed. Therefore, in spite of the biases in the data collected via 

smartphone app, any infrastructure requirement predicted based on Cycle Atlanta data can be 

assumed to hold true for non-smartphone users as well.  

CONCLUSION AND FUTURE RESEARCH 

This research provided an analytical approach to understand the characteristics and 

preferences of the different types of cyclists. Cyclists using the Cycle Atlanta tracking 

application were given the option to self-classify themselves into rider types, and socio-

economic data were collected to understand the basis for riders’ choice of rider type. The rider 

type classification was also used in a stated preference survey on route choice attributes to 

understand if such preferences are influenced by rider types.  

The first part of the analysis shows that socio-demographic variables and riding pattern 

are significant predictors of a cyclist’s probability of self-classifying himself/herself into a 

particular category. In particular, gender, rider history, and cycling frequency are significant in 

all the models. The results indicate that knowing a cyclist’s demographic information can 

potentially help in classifying the cyclist into a particular rider type. In the future, this can help 
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us to streamline surveys by replacing sociodemographic questions by a single rider type 

classification question. Alternatively, by knowing the socio-demographics characteristics 

commonly available through census data and other surveys, we will also be able to predict the 

rider type and hence infrastructure preferences of people without having to undertake a new 

survey design for cyclists only. It will also help in understanding infrastructure and facility need 

of future cyclists who are not yet cycling and hence, there are no revealed preference data on the 

preference of such future cyclists currently.  

The results also direct attention to the requirement of segmented route and facility 

preference decision models for different cyclist types. Since the purpose of the route and facility 

preference analysis is to understand the requirements by rider types, segmented models based on 

rider type may enable a planner to better predict the choices of a future cyclist based solely on 

the demographic information of the cyclists. Future route decision model research may therefore 

explore segmentation of the dataset to achieve better predictability. 

 From the second part of the analysis, it is evident that most route perception issues and 

facilities are viewed on a similar scale by cyclists as the mean scores on those facilities are quite 

similar across rider types. Other results indicate that sociodemographic attributes and confidence 

levels influence infrastructure and facility preference. However, the model fits are substantially 

low indicating that rider level data are not sufficient to predict route level decision process. 

Further investigation is necessary, as the literature shows that choice of route depends on route 

characteristics as well as rider characteristics like age and gender. Therefore, in future, for 

further insight, we plan to augment user data by revealed preference route choice data to make 

any definitive conclusion about the preference and requirements of cyclists.   
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CHAPTER 6. ROUTE CHOICE MODELING  

INTRODUCTION 

In recent times, bicycling as an alternative mode of transportation has been promoted 

both at the federal as well as local government level. Cycling is a healthy, green, and affordable 

mode of transportation that can provide easy accessibility to a multitude of destinations that are 

not within walking distances. However, the adoption of cycling as an alternative mode of 

commute is considerably hampered by a perceived lack of safety on the part of users, a major 

component of which arises from a lack of dedicated facilities. For the regional planning agencies, 

building dedicated infrastructure comes with substantial investment requirements and often with 

decisions to convert vehicular traffic lanes to bicycle facilities, both of which require strong 

justification that indicates potential benefits of such construction. 

In cities like Atlanta, where cyclists are traditionally few in number, in addressing issues 

on cycling infrastructure, regional planning agencies face the additional problem of lack of data 

on cyclists and their preferences. Most often, this lack is addressed by conducting surveys where 

participants are asked to indicate factors that influence their decision to bicycle or to map their 

latest rides. However, such stated preference surveys come with the issues of recall bias and 

often, a relatively small sample size that may not sufficiently represent the cycling community.  

A common alternative to stated preference surveys is revealed preference where data on 

vehicle trajectories are collected via vehicle tracking devices. Vehicle route choice preferences 

are then modeled based on revealed chosen trajectory. Although frequently used for collecting 

data on automobiles, this approach has been rarely used for cyclists because of multiple issues. 

First, until recently, tracking devices were prohibitively costly and hence, were only used for 

cases of primary importance to travel demand modeling and traffic flow management. Second, 
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computational effort required to model route choice is significant and its effectiveness is 

dependent on availability of a high resolution network. Often, street networks are not updated to 

include bicycle facilities recently constructed and bicyclists tend to use by-lanes and cut-thrus 

that are rarely found in street networks, both of which render route choice modeling for bicyclists 

much less effective and much more complicated. Finally, bicyclists are much less likely to 

optimize routes based on travel time which is the standard optimization algorithm used for 

vehicular traffic. Developing and using algorithms suited for modeling bicyclist route choice 

require separate efforts than the standard practice and agencies are often restricted by budget to 

allocate separate resources for cycling.  

Recently, integration of GPS capabilities into hand held devices and smartphones have 

opened up a new dimension in low cost real time data collection, and bicycling research has 

gained significantly from such advances. Hood et al. (2011), Broach et al. (2012) and Menghini 

et al. (2011) used either standalone GPS device-based data or GPS enabled smartphone-based 

data to analyze and model route choices of cyclists in San Francisco, Portland, and Zurich, 

respectively. New computationally efficient algorithms have been designed and proposed to 

generate route alternatives that consider different optimization objectives like slope, scenery, 

traffic speed, and presence of facilities. However, availability of high resolution network data 

and matching GPS data to that network still remains an issue that hinders route choice modeling 

of cyclists.  

Parallel to route preference, research on cyclists suggests that preference of cycling 

infrastructure may depend on comfort and confidence level of cyclists which is popularly 

categorized into four different categories of strong and fearless, enthused and confident, 

interested but concerned, and no way no how (Geller 2006). In our previous research, we slightly 
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modified these categories to strong and fearless, enthused and confident, comfortable but 

cautious, and interested but concerned and related them to the socio-demographics of the cyclists 

(Misra et al. 2015). We further used stated preference surveys to understand if infrastructure 

preference varied significantly by the rider types mentioned above. In this chapter, we extend 

that research using revealed preference data collected via the smartphone application Cycle 

Atlanta (Misra et al. 2014). In particular, we model the likelihood of choosing the shortest path 

between origin and destination as explained by socio-demographics and confidence level of the 

riders. In the future, this analysis will be extended to include route characteristics like traffic 

speed, traffic volume, number of lanes, and presence of facilities. 

BACKGROUND AND MOTIVATION  

There are three aspects to the route choice problem: (1) path enumeration or  generating a 

set of travel alternatives for any chosen route between a pair of origin and destination, (2) 

estimating a disaggregate demand model based on individual route choices, and (3) predicting 

choice probabilities using the route choice model developed for different planning purposes. 

Route choice modelling presents unique challenges in all of the above categories. In this section, 

we present a brief contextual review of literature in the area of path enumeration and route 

choice modeling.  

Path Enumeration/Choice Set Generation 

For the path enumeration step, a region wide street network can theoretically provide an 

infinite set of alternatives for any chosen route between any pair of origin and destination. While 

that makes solving the problem computationally infeasible, at the same time, limiting choice set 

to any arbitrary number of alternatives for ease of computation leads to poor prediction 

performance for some model specifications (Horowitz and Louviere (1995), Bekhor and Prato 
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(2006), Prato and Bekhor (2007), Bliemer and Bovy (2008)). Therefore, a trade-off is needed in 

the use of a search algorithm that can produce a reasonably competitive set of alternatives while 

being computationally efficient. Figure 15 shows the different path generation algorithms 

popularly used in route choice modeling. 

 

Figure 15.  Different types of Path Generation Algorithms 

 

Traditionally, generation of a set of alternatives to a chosen route is based on shortest route 

algorithms (Prato 2009, Broach 2010). Several modifications and variations of the shortest route 

algorithm have been proposed in the literature over time and interested readers may find a 

summary of such advances in Prato (2009). From the behavioral aspect, Ben-Akiva et al. (1984) 

proposed a labeling algorithm where each label represented a particular route characteristic that a 

user might want to minimize or maximize – for example, a label may be the shortest distance or 

the least congested path. Ramming (2002) used the labeling algorithm to search for the shortest 

route based on 16 different labels while Prato and Bekhor (2006) used 4 attributes to generate 
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alternatives. The results show that the success of the labeling algorithm is dependent on choice of 

labels, which is up to the discretion of the analyst and based on the understanding of the user 

preference and behavior. 

Recent choice set generation literature shows incorporation of randomness of individual 

preferences and is based on importance sampling – the probability of choosing a route depends 

on the importance of route characteristics like distance or congestion. Prato (2009), Freijinger 

(2007), Bovy et al. (2009), and Frejinger et al. (2009) suggest using a sampling correction term 

in the route choice model when choice alternatives are generated using these probabilistic 

methods.  

In the simulation approach, it is assumed that users perceive path cost with some errors – 

so the cost function is assumed to be from a distribution and the results largely depend on the 

choice of the distribution from which the cost function is extracted. The doubly stochastic 

method is based on the assumption that both the path cost and the perception of the path cost 

vary among users – i.e. each user perceives path cost differently and with some error (Bovy 

2009). The probabilistic methods are good at producing a heterogeneous set of alternatives and 

have been shown to replicate the observed route more frequently than other alternatives.  

Two other methods not used very often in route choice are the constraint enumeration 

method and probabilistic method (Prato and Bekhor 2006, Bekhor and Prato 2009, Friedrich et 

al. 2001). The constrained enumeration method uses branch and bound algorithms and is based 

on the idea that instead of least cost, users often choose based on personal preferences.  The 

algorithm was found to replicate the observed route closely but the computation time increases 

exponentially with the depth of the branching tree which is significant for a large network and is 
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therefore limited in scope to small networks.  The probabilistic method assigns a generated 

probability to each route and is therefore again computationally prohibitive to be carried out for a 

large regional network.  

Route Choice Modelling 

One of the predominant issues with route choice modelling cascades down from the previous 

step of choice set generation. Bekhor et al. (2006), Prato and Bekhor (2006), Freijinger (2007), 

and Bovy (2009) show that size and composition of the choice set effects the objective function 

and convergence rate of models – therefore, much of the prediction performance of the models 

will depend on the generated choice set and the alternatives contained therein. 

The other issue with route choice modeling is that in a large network, alternative routes 

are often very similar and have overlapping links. This leads to the violation of the independence 

of irrelevant alternatives (IIA) property of logit structures and warrants either (i) use of models 

with explicit inclusion of correlation terms like the Generalized Extreme Value (GEV)family or 

probit models which are computationally expensive and complicated or (ii) use of some 

correction factor along with the multinomial logit  structure to account for the path overlap. 

Table 8 shows the most common choice models for route choice modelling.  
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Table 8. Most Common Choice Models Used in Route Choice Modelling 

 

 

The first introduction of a correction factor in a logit structure is attributed to Cascetta et 

al. (1996). The model proposed by Cascetta et al. (1996), called C-logit, is based on MNL 

Name Basic 
Structure 

Modification Formulation 

C-Logit 
(Cascetta et al. 
1996) 

Multinomial 
Logistic 

Additive 
Similarity 
Measure 

Pk =  
exp(Vk+βCF .CFk)

 exp(l∈C Vl+βCF .CFl)
 

Path Size Logit 
(PSL) 

(Ben-Akiva and 
Bierlaire 1999; 
Ramming 2002) 

Multinomial 
Logistic 

Path Size 
Modification for 
Path Overlap 

 

Pk =
exp(Vk + βPS . lnPSk)

 exp(Vli∈C + βPS . lnPSl)
 

 
 

Path Size 
Correction  

(Bovy et al. 2008) 

Multinomial 
Logistic 

Path Size 
Correction for 
Path Overlap 

 

Pk =
exp(Vk + βPSC . PSCk)

 exp(Vli∈C + βPSC . PSCl)
 

 

Multinomial 
Probit (Daganzo 
and Sheffi 1977, 
Sheffi and Powell 
1982),  
Logit Kernel with 
Random Co-
efficients/Mixed 
Logit model (Ben-
Akiva and Bolduc 
1996, McFadden 
and Train 2000, 
Lam and Small 
2001, Nielson 
2002, 2004)  
Logit Kernel with 
Factor Analytic 
Approach (Bekhor 
et al. 2002, 
Frejinger and 
Bierlaire 2007) 

Non 
GEV/Non 
Multinomial 
Logistic 

Inherently do 
not have the IIA 
property 

 
 

Pnk (βn) =
exp(βn

′ Xnk )

 exp(βn
′ Xnl )iϵC

 

 

Pnk (βn) =  
exp(βn

′ Xnk )

 exp(βn
′ Xnl )iϵC

f(β)dβ 
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structure and involves estimating an additional term that is a similarity measure between a route 

and the other routes in a choice set.  However, the most commonly used model specification is 

the path size logit (PSL) presented by Ben-Akiva and Bierlaire (1999) and modified later by 

Ramming (2002). The probability of choosing path k according to the PSL structure is  

𝑃𝑘 =
exp (𝑉𝑘 + 𝛽𝑃𝑆. 𝑙𝑛𝑃𝑆𝑘)

 exp (𝑉𝑙𝑖∈𝐶 + 𝛽𝑃𝑆. 𝑙𝑛𝑃𝑆𝑙)
                      

where PSk and PSl are the path sizes of routes k and l respectively and βPS is the parameter to be 

estimated. Vk and Vl are the observed utilities of path k and l respectively (l≠k). C is the set of 

path choice alternatives of which i is any alternative. Path sizes are formulated differently by 

Ben-Akiva and Bierlaire (1999) and Ramming (2002) and are given respectively as  

𝑃𝑆𝑘 =  
𝐿𝑎

𝐿𝑘
𝑎∈Γ𝑘

1

 𝛿𝑎𝑙𝑙∈𝐶
      (Ben- Akiva and Bierlaire, 1999) 

𝑃𝑆𝑘 =  
𝐿𝑎

𝐿𝑘
𝑎∈Γ𝑘

1

 (
𝐿𝑘
𝐿𝑙
)
𝛾𝑃𝑆

𝛿𝑎𝑙𝑙∈𝐶

   (Ramming 2002) 

 where La is the length of link a, Lk is the length of path k, Ll is the length of path l, δal = 1 

if link a is traversed by alternative l and 0 otherwise, and γPS is a scale factor. 

 While path size logit provides a computationally simple model, it only accounts for a part 

of the correlation and within MNL error structure. Frejinger (2007) estimated the PSL model 

with sampling correction while considering the full choice set of paths as the actual choice set, 

and results show that unbiased estimates are obtained only when the correction term is calculated 

on the full choice set. 
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Bovy et al. (2008) suggested a similar formulation of the problem but with modification 

of the path size term, and this model came to be known as Path Size Correction Logit (PSCL). 

The probability of choosing route k is given by 

𝑃𝑘 =
exp (𝑉𝑘 + 𝛽𝑃𝑆𝐶 . 𝑃𝑆𝐶𝑘)

 exp (𝑉𝑙𝑖∈𝐶 + 𝛽𝑃𝑆𝐶 . 𝑃𝑆𝐶𝑙)
 

And the path size correction is given by: 

𝑃𝑆𝐶𝑘 = − ∑
𝐿𝑎
𝐿𝑘

𝑎∈Γ𝑘

𝑙𝑛∑𝛿𝑎𝑙
𝑖∈𝐶

 

where all terms have same interpretations as the previous equation (PSCk and PSCl are the path sizes 

of routes k and l respectively and βPSC is the parameter to be estimated) 

A completely different set of models not based on the logit formulation have been 

proposed to account for the correlation explicitly. These models are formulated based on the 

GEV structure and include Paired Combinatorial Logit (Prashkar and Bekhor 1998, 2000, 

Koelman and Wen 1998), Cross Nested Logit (Vovsha 1997, Prashkar and Bekhor 1998), and 

Generalized Nested Logit (Bekhor and Prashkar 2001, Wen and Koppelman 2001). While these 

models are good at accounting for link overlap issues, they are not used frequently because of the 

computational complexity and cost which far outweigh the benefits (Prato 2009). 

Three different non-GEV and non-logit based models have been used – the multinomial 

probit (Daganzo and Sheffi 1977, Sheffi and Powell 1982), the Logit Kernel with Random Co-

efficients or Mixed Logit model (Ben-Akiva and Bolduc 1996, McFadden and Train 2000, Jou 

2001, Lam and Small 2001, Nielson et al. 2002, Nielson 2004), and Logit Kernel with Factor 

Analytic Approach (Bekhor et al. 2002, Frejinger and Bierlaire 2007).  The computational costs 
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for all of these models are significantly high, particularly for large networks which prevent their 

frequent use in route choice modelling problems.  

Bicycle Route Choice  

Bicyclist route choice is uniquely different from vehicular route choice in preferring 

safety over travel time or congestion and in using by-lanes and cut-thrus instead of the street 

network. Therefore, even if similar frameworks are used to model cyclist route choice and 

vehicular route choice, cycling route choice requires special attention in formulating choice 

preferences and in matching travelled roads to the street network. The first relevant study in this 

direction was done by Hall et al. (1997) for the city of Guelph, Ontario, Canada and since then, a 

few other publications have also addressed the issue of bicyclist route choice: Table 9 

summarizes four such publications that are relevant to this research.    

Table 9. Salient Bicycle Route Choice Literature Highlights 

 

 

Article Study Location Choice Set 
Generation  

Choice 
Model 

Major Findings 

Hall et al. 
(1997)  

City of Guelph, 
Ontario, 
Canada 

Shortest 
Distance 

NA (i) Grade (ii) traffic 
signals (iii) number of 
turns (iv) no. of bus 
routes per hour 
 

Broach et al. 
(2009) 

Portland, 
Oregon, 
U.S.A. 

Labeling 
algorithm with 
20 alternatives 

Path Size 
Logit 

Distance, slope, no. of 
turns, traffic volume are 
disutilities; bike facilities 
are useful 

Menghini et al. 
(2010) 

Zurich, 
Switzerland 

Search and 
bound 
algorithm  

Path Size 
Logit 

Distance, average 
gradient, marked bike 
facility influence choice 

Hood et al. 
(2009) 

San Francisco, 
California, 
U.S.A. 

Doubly 
Stochastic 

Path Size 
Logit 

Shorter routes, fewer 
turns are preferred; 
upslope is always a 
disutility; female 
cyclists avoid slope; 
bike facilities are 
preferred by new 
cyclists 
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The study by Hall et al. (1997) was followed up by a series of bicycle route choice studies – 

these studies overcame the data issues of the previous study by using a GPS-based automatic 

route data collection system which minimized user induced bias in the data, had the advantage of 

recording multiple trips for each individual, and also significantly increased the number of 

participants as now the participant either only had to carry an instrument that recorded the trip 

automatically or had to download and turn on a smartphone app to record his/her trip.  

Two parallel data collection methods emerged using GPS-based route data for bicycle 

route choice modeling around the same time. In the first case, GPS enabled devices were 

distributed among the participants at the beginning of the study for a scheduled period of time, 

and the participant either had to carry it with him/her or had to mount the device on his/her 

bicycle. The data recorded were locally stored in the memory card of the device and at the end of 

the scheduled period, the devices were called back from the participants and the data were 

retrieved and analyzed. Proponents of this approach include the Oregon bike research group 

(Broach et al. 2009, Dill et al. 2008) and the travel demand modeling group headed by Dr. Kay 

Auxhausen at Eidgenossische Technische Hochschule, Zurich (Menghini et al. 2010) who have 

used this approach for data collection and route choice analysis.   

The other method of data collection is to use the GPS enabled smartphones owned by 

participants for recording data and directly uploading the data wirelessly from the phone to a 

central server.  The advantage in this method is that it is cheap and does not require any 

investment in equipment while data quality is comparable to the GPS devices. Pioneering work 

in this area was done at San Francisco County Transportation Authority (SFCTA) (Charlton et 

al. 2009, Hood et al. 2009) and was later extended by the Cycle Atlanta group (Poznanski 2013). 

Hudson et al. (2012) also did a similar route choice study in Austin.  
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In the following section, the research using these two different technologies is discussed 

in detail, and a critique of the models developed in these studies is also presented.  

The GPS Device Based Data Collection Efforts  

Dill et al. (2008) and Broach et al. (2009) both based their research on the same study of 162 

cyclists in Portland, Oregon. While Dill et al. (2008) used the collected data to compare chosen 

route against the shortest path, Broach et al. (2009) extended the study to develop a path choice 

model for cyclists in Portland, Oregon.  The studies included both utilitarian and recreational 

trips and participants were chosen through stratified sampling from respondents to an online 

survey.  The demographic and personal characteristics used for stratification were cycling 

frequency (frequent vs. infrequent), home location (Portland vs. remainder), age, and gender. As 

mentioned earlier, at the beginning of their study, GPS devices were distributed to the 

participants, and at the beginning of each trip, the participant had to tap the screen to turn the 

device on. The user also had to enter a few other pieces of information by choosing from drop 

down menus provided:  including the trip destination category (home, school, work, etc.), the 

weather (sunny, cloudy, rain, etc.), temperature (hot, moderate, etc.) and wind (heavy, light, or 

no wind).  Enroute, the GPS unit recorded location data at every 3 seconds, and these data were 

stored in the device. At the end of the study period, the data were retrieved and each individual 

trip was mapped. Participants were then asked to log on to their maps and identify any trip that 

was recorded erroneously – this was supplemented by a questionnaire to validate the correctness 

of the data collected and to understand the reason behind the mode choice.  

As with the study by Hall et al. (1997), snapping the chosen route to the city network 

required augmentation of the network with links from the route data collected and validation 
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through aerial photography.  Map matching algorithms were developed by the researchers to 

account for GPS related errors like snapping onto adjacent roads instead of the actual route, data 

point clouds at intersections, and at start and stop, erroneous turns, etc. The final cleaned and 

matched network data were used for the analysis.  

A statistical analysis of the data revealed that women traveled less distance than men and 

also ranked facilities higher than men. The most important factor in choosing a route was stated 

to be minimum time followed by low traffic volume and presence of a bike lane. No significant 

relationship was found between route choice and slope. A comparison between shortest route and 

the actual route showed that people spent more time on bicycle facilities and low traffic streets 

than predicted by the shortest route and that the deviation from shortest route increased with 

length of trip.  

Broach et al. extended the study by Dill et al. (2008) to develop a multivariate discrete 

choice model of bike route choice of cyclists in Portland.  In doing so, Broach et al. overcame 

the issue of comparing actual route choice with only the shortest distance – the model now was 

capable of predicting marginal utilities of different attributes and handling any interaction 

between them.  One of the difficulties in developing a discrete choice model is generating a 

feasible set of not-chosen alternatives. In a city road network, this has infinite possibilities and 

hence, a sorting algorithm needs to be used to restrict the choice set to a finite number. In this 

case, a labeling algorithm was used after trial and error with a few other algorithms.  On average, 

20 different alternatives were generated for every route. For the choice model, a multinomial 

logit model was used with correction for path choice overlapping using path size correction term 

from Ben-Akiva and Bierlaire (1999).  The path attributes used for the model were distance, 

slope, turns, traffic volume, signals, and bike facility type. With all other parameters held 
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constant, log distance was the most important factor in route choice, implying that for a short 

commute, a cyclist will be less willing to take the same detour as he/she would be if the 

commute was longer. Distance was found to be strongly correlated with travel time and hence 

not included in the study. Slopes and turns consistently had negative coefficients implying a 

disincentive attached to routes with high slopes or a significant number of turns. Traffic volume 

also proved to be a disutility, while traffic signals had a positive utility when the cross traffic was 

high and had a disutility for low traffic streets. Bike boulevards and paths were strongly 

preferred while the utility associated with bike lanes was just enough to offset the disutility of 

traffic volume in that link. Therefore, bike lanes are preferred in streets with high traffic and over 

busy arterials without any bike lane, but they do not add any separate value to the cyclists by 

themselves.  The route choice model developed by Broach et al. is being incorporated into the 

regional travel demand model of Metro, the Portland area municipal planning organization 

(MPO) in an effort to better predict where cyclists travel and what type of facilities they prefer, 

so that optimized investment decisions can be made. 

Menghini et al. (2010) did a similar study on bicyclists in Zurich – however, they did not 

directly conduct the data collection for the study but rather received a multimodal travel dataset 

from a private agency in Zurich. The unique contribution of this study is in developing a GPS 

data cleaning algorithm for large datasets without any other information. The choice set was 

generated under MATSim (Multi-agent Transportation Simulation), using a search and bound 

algorithm, which generated about 60 alternatives to each route. The route choice model selected 

is the multinomial logit model with path choice overlap correction as in the study by Broach et 

al. (2009).  The parameters used for estimation are maximum and average gradient, length of 

trip, percentage of marked bike facility, and number of traffic lights.  Length was found to be the 
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single most important criterion followed by average gradient and percentage of marked bike 

facility. Number of traffic lights and maximum gradient did not have any significant impact on 

route choice.   

Limitations of the Studies 

While the study by Broach et al. (2009) was one of the first to use revealed preference data for 

creating a route choice model for cyclists, a few limitations still remain that require further 

research. For instance, the study was based in Portland, a very bike friendly city with more bike 

facilities than can be expected in an average U.S. city. Therefore, it is difficult to translate the 

findings regarding preference of bike facility and the willingness to travel an extra distance to 

avail a facility to other regions. Second, the GPS data cleaning was done manually, which was 

possible because of a low participant base and a low number of trips (1559 trips) used in the 

study. For larger datasets, it will not be possible to clean GPS data manually, and some 

algorithms and scripts will be necessary. But the most important issue with the studies by Dill et 

al. (2008) and Broach et al. (2009) is similar to that noted in the study by Hall et al. (1997) - all 

these studies lack segmentation of the cyclist population based on experience, comfort level, or 

attitude, although the literature has always emphasized the impact of rider characteristics on 

route choice decisions (Pucher and Buehler 2007, Krizek 2007). During data collection, cyclists 

were categorized as frequent and infrequent cyclists but no separate analysis was performed, 

possibly because the number of infrequent cyclists was very low, but this defeats one of the 

major purposes of modeling as mentioned earlier.  

Menghini et al. (2010) acknowledge this limitation of their study and suggest using socio-

demographic characteristics like age, gender, and a measure of risk aversion of the riders to 
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overcome the issue. As the remaining part of the literature critique will show, although age and 

gender have been used in one of the models, a measure of risk aversion and the level of 

experience of the cyclist still remain to be modeled into route choice studies.  

The GPS Enabled Smartphone Based Data Collection Effort 

The data collection effort of this group was based off a free smartphone app called CycleTracks 

that was created and developed at San Francisco County Transportation Authority (SFCTA). A 

user has to only download the app and turn it on at the start of the trip - the app then records 

route GPS data for every second of travel and stores it locally. On completion of the trip, the user 

is given the option to upload the trip or discard it. Upon uploading, the trip data are stored in a 

central server before that can be used for analysis (Charlton et al. 2009).  As the goal of the study 

was to relate cyclist route choice to personal, trip-based, and network characteristic-based 

factors, the app comes with an optional provision where participants can provide their age, 

gender, cycling frequency, and the purpose of the trip. There is also a provision to enter the 

participant’s email address, should he/she choose to do so. For maintaining anonymity of data, 

this field is completely scrubbed off during data analysis and is only stored for the purpose of 

future correspondence or survey needs.  

The purpose of the CycleTracks research was to develop a bicycle route choice module 

for the existing tour-based travel demand model SF-CHAMP for San Francisco and the Bay 

Area.  The data collected through CycleTracks were used to develop a multinomial logit model 

for cyclist path choice from which logsums are fed into SF-CHAMP, enabling it to assign the 

generated trips to the city road network. Hood et al. (2009) used the data cleaning and map 

matching algorithm developed at ETH by Dr. Kay Auxhausen and Dr. Nadine Schussler 
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(Schussler and Auxhausen 2009) and used the same multinomial logit model with correction for 

path size overlap as was done by Broach et al. (2009) and Menghini et al. (2010).  The 

contributions of this study are in using a different algorithm for the choice set generation, 

including gender and cycling frequency as model parameters, using panel data for model 

validation, and in extending the modeling exercise into a benefit cost analysis of possible new 

facility construction. The choice set generation algorithm used is a doubly stochastic genetic 

search algorithm that generates the choice set through randomizing both the link attributes and 

the beta coefficients of the cost function.  The parameters that were estimated in the model are 

length, number of turns per km, upslope, type of bike facility, and travel in the wrong direction. 

The results suggest that cyclists prefer shorter routes and fewer turns, whereas upslope is always 

a disutility. However, bike lanes were found to be preferred over shared use lanes, and infrequent 

bicyclists were more likely to prefer a bike lane than shared lane. Slopes were particularly 

avoided by female cyclists and during a commute trip.  A holdback sample of 202 cyclists was 

used to validate the results of the model.  

The CycleTracks app was adopted for a similar study in Austin, Texas by Hudson et al. 

(2012). The data collected using the app were used to develop a cycling route choice map for the 

region, but was not extended to modeling route preferences.   

Limitations of the Studies 

 Although the study by Hood et al. (2009) addressed most of the issues discussed previously, it 

still falls short of including a risk aversion attitude measure into the route model. Another issue 

in this study was the disproportionate share of trips recorded by users. To solve the problem, in 

the log likelihood function, each observation was weighted by the inverse of the number of 
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observations for an individual to have equal weight for all observations. However, this raises the 

question of if a cyclist who used a route once should have equal importance in model estimation 

as someone who uses the route regularly.  Further research is needed to ascertain a weighting 

function that answers such questions.  Also, the benefit-cost analysis done in this study is based 

on a national cost estimate and calculated the user benefit or willingness to pay only based on 

value of time while several other factors like health benefits and environmental benefits are more 

important for bicyclists. Therefore, further research is needed in developing a benefit cost 

analysis framework for cycling facilities that include all relevant factors.  

A particular study, though not based on revealed preference data, deserves mention 

because of its use of a different model for bike route choice modeling and for being the only 

study having on-street parking as a route attribute in the proposed model. Sener et al. (2008) used 

a web based stated preference survey to collect data on cyclist route choice in Texas and used a 

panel mixed multinomial logit model to estimate route choice parameters. Of the chosen 

attributes, they found that cyclists were particularly sensitive to travel time and preferred streets 

with no on-street parking. Moderate hills were preferred over flat terrain and no significant 

influence of any other cyclist characteristic (experience, for example) was noted except for 

cyclist age as interaction between parking and cyclist age.  

ANALYSIS AND RESULTS 

For the purpose of this research, the alternative to the chosen route was taken to be the shortest 

route path generated by the A-star algorithm. The binary logistic choice that was modelled was 

whether the riders chose the shorter of the two routes depending on their age, gender, and what 

type of rider they are. Additional regression models were also constructed to understand (i) the 
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relationship between trip length and rider characteristics and (ii) the percent deviation of the 

chosen route from the predicted shortest route based on rider characteristics.  

Three data sources were used to create the road network map. The Atlanta Regional 

Commission’s street network shapefile (RC_ROUTES) was obtained from the travel demand 

modeling group of Atlanta Regional Commission (ARC). It is a modified version of the roadway 

database maintained by the Georgia Department of Transportation (GDOT) and focuses on state 

managed roadways rather than locally managed roadways and bikeways. However, it contains 

the most comprehensive inventory of roadway characteristics like speed limit, annual average 

daily traffic (AADT), number of lanes, truck volume, etc. which are useful information for route 

choice modeling at a later stage. The second data source used was Open Street Map’s (OSM) 

bicycle map for Atlanta. The OSM map has local roads and locally managed facilities which 

were not present in the RC_Routes map. The two maps were spatially joined based on a buffer 

distance to get a more complete map of the road network of Atlanta.  The resulting map was then 

cleaned for non-bicycling facilities like freeways. The final data source was the Metro Atlanta 

Bicycle Facility Inventory. The location of on street parking on roadways with conventional 

bicycle lanes and buffered bicycle lanes was manually coded in ArcGIS using Google Earth 

imagery. The treatment of intersection approaches with right turn only motor vehicle lanes that 

connect to links with conventional bicycle lanes, buffered bicycle lanes, or protected cycle tracks 

were also manually coded in ArcGIS using Google Earth Imagery. As a final measure, the trips 

were plotted on the map and checked for links traversed by cyclists but missing in the network. 

Such links were manually added where more than 2 bicycle trips were found to follow a path, but 

the path was not marked as a link in the network. This was assumed to be mainly because of 

tendency and ability of bicyclists to use cut-thrus and private alleys which are not marked in 
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regional network maps. However, shortcuts through parking lots were not added as links 

although there were multiple such cases.  

Figure 16(a) shows the number of trips recorded by each rider. Figure 16 (b) shows the 

trips by purpose. Figure 16(c) shows the trip purpose across age – riders in the age group > 45 

years use cycling for exercise than any other group. Figure 16(d) shows trip purpose by gender, 

and since the data are heavily dominated by male cyclists, they are the dominating group in all 

trip purpose categories. However, female riders have almost a similar share of shopping trips in 

spite of being a small fraction of the riders. This calls for particular consideration in land use 

planning to allow women to do trip chaining comfortably and easily.  Figure 16(e) shows trip 

purpose by rider type. The strong and fearless riders make more social and shopping trips by 

cycling than other types of riders, while enthused and confident riders using cycling for commute 

more than any other rider type. Comfortable but cautious riders use cycling for exercise more 

than other rider types. Figure 16(f) shows the frequency distribution of trip length. The mean trip 

length, marked by dashed red line was found to be about 3.75 miles (about 5.5 Kms). The 

majority of the trip lengths were within 4-6 miles which is a standard commute distance. Figure 

16(g) shows the trip length by age. It should be noted that the highest frequency of trips for 

younger riders are at a shorter distance than that of senior riders which is initially counter 

intuitive. However, one of the reasons may be that senior riders are less likely to choose shorter 

routes if that does not provide sufficient safety and comfort while younger riders may prefer 

shorter distance to a detour for a bike facility. The younger riders are also dominated by college 

students, and their commutes may be much shorter in length. Figure 16(h) shows trip length 

across gender, and we see a similar trend as age here – the highest frequency of trip lengths for 

women are longer than that of men. Figure 16(i) shows trip length across rider type, and 
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enthused and confident riders are seen to have shorter trips than comfortable but cautious riders. 

Strong and fearless riders have slightly longer mean trip length than enthused and confident 

riders, but that may be because they bicycle longer distances.  

For the purpose of this study, we considered only the “primary” trip of each user and 

therefore restricted the analysis to work or school trips (trip purpose = “work”/ “school”), thus 

reducing the number of trips to be considered from about 20,000 to about 12,000. The trips were 

further restricted to be greater than 1 mile and less than 8 miles, resulting in about 10,000 trips.  

 

  

Figure 16(a) Number of Trips Recorded by Users 
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Figure 16(b) Trip Purpose Distribution 

 

Figure 16(c) Trip Purpose Distribution across Age 
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Figure 16(d) Trip Purpose Distribution across Gender 

 

Figure 16(e) Trip Purpose Distribution across Rider Type 
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Figure 16(f) Trip Length Distribution 

 

Figure 16(g) Trip Length across Age 
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Figure 16(h) Trip Length across Gender 

 

Figure 16(i) Trip Length across Rider Type 

Figure 16. Cycle Atlanta Trips (a) Number of Trips Recorded by Users (b) Trip Distribution by 

Purpose (c) Trip Purpose Distribution across Age (d) Trip Purpose Distribution across Gender (e) 

Trip Purpose Distribution across Rider Type (f) Trip length Distribution (g) Trip Length across 

Age (h) Trip Length across Gender (i) Trip Length across Rider Type  
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The trip data were then linked to the sociodemographic data via the user id key. As with the 

models in Chapter 4, the comfortable but cautious group and the interested but concerned group 

were merged into one group. One random trip was then chosen per user to perform the shortest 

route analysis. The first model estimated is a linear regression model to understand the 

relationship between trip length and age, gender, and rider types. For all the models, the 

comfortable but cautious & interested but concerned group was chosen as the base group as was 

age 18-24 implying that all results should be interpreted in a comparison to that category. Table 

10 presents the results of the regression model on trip length as function of sociodemographic 

characteristics of the riders. Age has a positive relationship with trip length and male riders are 

also more likely to ride longer distances. Enthused and confident riders are less likely to take 

longer trips than comfortable but cautious riders, but strong and fearless riders are more likely to 

take longer trips. This may be because enthused and confident riders are more inclined to use 

shortest routes even if there are no bicycle facilities which renders their trip short compared to 

comfortable but cautious riders. On the other hand, strong and fearless riders are more likely to 

naturally undertake longer trips than any other categories.  

Table 10. Trip Length as Function of Socio-demographic Characteristics 

 

 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Coefficients Estimate Std. Error t value Pr(>|t|) Significance

(Intercept) 2.4334 0.17233 14.12 < 2e-16 ***

age25-44 0.96803 0.15798 6.128 9.67E-10 ***

age45+ 2.37601 0.1906 12.466 < 2e-16 ***

genderMale 0.10798 0.10187 1.06 0.289

Enthused and 

confident -0.52289 0.08236 -6.349 2.38E-10 ***

Strong and fearless 0.04501 0.07 0.643 0.52
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The second model was used to understand the relationship between deviations from the 

network based on the shortest route depending on their socio-demographic characteristics. For 

the majority of the trips, the network based shortest route is shorter than the actual trip length, 

therefore this model may serve as a proxy to understand if any rider group is systematically 

choosing a longer route possibly because of factors not yet known to us. Table 11 presents the 

results of the model estimate. Gender is only significant in this model and male riders are less 

likely to deviate from shortest route as compared to female riders. Similarly, enthused and 

confident riders and strong and fearless riders are also less likely to choose longer routes over 

shortest routes as compared to comfortable but cautious riders, with strong and fearless riders 

more likely to choose shortest routes than enthused and confident riders. People in the age group 

>45 are less likely to choose the shortest route than riders in the age group of 18-24 while people 

in the age group of 25-44 are more likely. 

 

Table 11. Deviation from Network based Shortest Route as Function of Socio-Demographic 

Characteristics  

 

 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Coefficients Estimate Std. Error t value Pr(>|t|) Significance

(Intercept) 6.7953 8.9253 0.761 0.4465

age25-44 -0.1981 8.1843 -0.024 0.9807

age45+ 2.3757 9.8707 0.241 0.8098

genderMale -9.3924 5.273 -1.781 0.0749 .

Enthused and 

confident -2.4476 4.2633 -0.574 0.5659

Strong and fearless -5.2741 3.6233 -1.456 0.1456
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Finally, a binary logistic choice model was used to understand whether a rider chose a 

shorter of the two available alternatives depending on the socio-demographic characteristics. The 

model estimates are presented in Table 12(a).  

Table 12(a). Choice of Shorter Route Based on Socio-demographic Characteristics 

 

 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The results show that senior riders are more likely to not choose shortest route while 

enthused and confident riders as well as strong and fearless riders are more likely to choose 

shortest routes. However, male riders are also more likely not to choose shortest routes, which is 

counterintuitive. This may be because in general, male riders undertake longer trips, and hence, 

there is not much difference from the shortest route and the actual route. Another model was 

estimated by including trip distance to see if distance is a reason for the counterintuitive sign of 

this model. The results are presented in Table 12(b). With the introduction of trip length, age 

loses its significance indicating that trip length is related to age of a rider. However, trip length is 

significant and has a negative sign indicating that longer the trip is, riders are less likely to 

choose shortest routes possibly because either the difference is not significant enough or because 

longer trips require being comfortable for a longer time and people are more likely to choose 

facilities that maximize that perceived comfort. 

Coefficients Estimate Std. Error t value Pr(>|t|) Significance

(Intercept) 0.618 0.0303 20.407 < 2e-16 ***

age25-44 -0.072 0.0278 -2.593 0.00956 **

age45+ -0.150 0.0335 -4.486 7.42E-06 ***

genderMale -0.012 0.0179 -0.681 0.4956

Enthused and 

confident 0.058 0.0145 3.989 6.73E-05 ***

Strong and fearless 0.007 0.0123 0.595 0.55207
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Table 12(b). Choice of Shorter Route Based on Socio-demographic Characteristics and Trip 

Distance 

 

 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

CONCLUSION 

In this chapter, we analyzed the Cycle Atlanta trips based on the socio-demographic 

characteristics of its users. We also estimated the likelihood of a cyclist to choose a longer route 

over a network based shortest route depending on his/her socio-demographic makeup and 

confidence level. The results show that female cyclists are more likely to make trips that are 

shorter than their male counterparts, have almost the same number of shopping trips as male 

riders, and are more likely to take longer routes than the network based shortest routes. This 

indicates that instead of classifying cyclists as new or inexperienced cyclists and constructing 

infrastructure accordingly, it will be more effective if the gender distribution of the locality is 

taken into consideration when planning for cycling infrastructure. Since the only trip purpose 

that has more female cyclists than male is shopping, it may require a serious reconsideration of 

land use planning to have more female cyclists and more trips from existing female cyclists. 

Distance is not the only factor that determines route choice for bicyclists, and future research will 

look into incorporating other factors like traffic stress, presence of facilities, scenery, and slope 

into the route choice model of cyclists in Atlanta.    

Coefficients Estimate Std. Error t value Pr(>|t|) Significance

(Intercept) 0.7549 0.0293 25.7620 <2e-16 ***

age25-44 -0.0179 0.0264 -0.6770 0.4986

age45+ -0.0171 0.0322 -0.5300 0.5959

genderMale -0.0061 0.0169 -0.3630 0.7169

Enthused and 

confident 0.0283 0.0138 2.0590 0.0396 *

Strong and fearless 0.0098 0.0116 0.8430 0.3995

Trip length -0.0562 0.0025 -22.7850 <2e-16 ***
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CHAPTER 7. LINK BASED QUALITY-OF-SERVICE MEASURE 

USING BICYCLIST PERCEIVED LEVEL OF TRAFFIC STRESS 

 

INTRODUCTION 

Levels of bicycling in the United States remain low compared to its international peers. 

However, cities throughout the country are interested in attracting new riders since bicycling is a 

healthy and environmentally friendly mode of transportation that has the potential to provide 

more equitable transportation options for all sections of society (Buehler and Pucher 2008). 

Multiple studies have been conducted to understand the barriers to bicycling. The findings 

indicate that topography (Buehler and Pucher 2008, Dill and Gliebe 2008, Winters et al. 2010, 

Krenn et al. 2014, Broach et al. 2012), weather (Buehler and Pucher 2008, Godefroy and 

Morency 2012, Parkin et al. 2007, Nankervis 1999, Brandenburg et al. 2004, Miranda-Moreno 

and Nosal 2011), city size and population density (Buehler and Pucher 2008, Godefroy and 

Morency 2012, Pucher et al. 1999, Cervero and Duncan 2003, Winters et al. 2010), income and 

sociodemographics (Buehler and Pucher 2008, Godefroy amd Morency 2012, Pucher 1999, Dill 

and Carr 2003, Smart et al. 2014), and relative cost of motor vehicles and public transit (Pucher 

et al. 1999) can influence the decision to bicycle. After a review of the literature, it was 

determined that this study would focus on traffic, roadway, and bikeway characteristics since 

they have been found to have a significant influence on the decision to bicycle based on their 

effect on the perceived safety of a facility (Buehler and Pucher 2008, Pucher et al. 2010, Winters 

et al. 2011, Misra et al. 2014, Urban et al. 2014). 

Bicycling mode share can be increased by building well connected bicycle facilities, 

which address safety concerns and appeal to the majority of the public. Research has shown that 

Americans have a range of tolerances for perceived traffic stress with the majority of the 
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population tolerating only low levels of traffic stress such as low traffic volumes and motor 

vehicle speeds while bicycling (Winters et al. 2010, Dill and McNeil 2013). To plan for 

expansion of the bicycle network, it is important for cities to know how existing facilities are 

performing and set up measures of performance such as quality-of-service measures. Existing 

bicycle quality-of-service measures include the Highway Capacity Manual Bicycle Level of 

Service (HCM BLOS), Bicycle Compatibility Index (BCI), Bicycle Environmental Quality Index 

(BEQI), and the Mineta Transportation Institute Level of Stress (MTI LTS) (HCM 2010, Harkey 

et al. 1998, San Francisco Department of Public Health, n.d., Mekuria et al. 2012).  

The above mentioned existing bicycle quality-of-service measures often require data, 

which are not readily available and which can only be obtained through extensive and costly 

field research. In addition, all of these measures except for the MTI LTS lack the ability to 

measure the perceived stress related to a facility, a measure which is critically important to 

bicycle mode choice. The MTI LTS was chosen by this study as a quality-of-service model to 

build upon due to its many strengths including requiring more easily accessible data, being more 

intuitively understandable to the public, consideration of both current and potential bicyclists 

through the use of Geller’s four types of bicyclists, and ability to analyze innovative bicycle 

facilities such as protected cycle tracks.  

The objective of this study is to modify the Mineta Transportation Institute’s LTS 

measure using traffic and roadway characteristics data that are available to most planning and 

engineering agencies and also take into account the perceived traffic stress that bicyclists 

associate with a facility. The modified LTS seeks to build upon the MTI LTS by updating the 

bicyclist typology used to the Cycle Atlanta typology, grounding the criteria used to measure the 
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perceived stress related to a facility in the literature, and refining the required data to more easily 

accessible data while maintaining strength of analysis. 

The purpose of the modified LTS is to build a quality-of-service measure which will 

create a standardized system of designating streets into different categories using data that are 

readily available to transportation professionals. Such a standardized quality-of-service measure 

will allow planners and engineers to assess the suitability of different bicycle facility options and 

assist in project selection. The proposed measure was used in a case study area around the 

Atlanta Eastside Beltline Trail and was found to be useful in determining the perceived stress of 

different roadway and bikeway facilities for current and potential bicyclists. 

LITERATURE REVIEW/BACKGROUND 

The HCM BLOS measures the quality-of-service experienced by bicyclists by stratifying 

multiple performance measures to determine levels of service ranging from Level-of-service 

(LOS) F as the worst condition to LOS A as the best operating condition (HCM, 2010). BLOS is 

calculated with the use of a linear function with weights assigned to independent variables and 

produces a numerical score ranging from 0 to 6 with the numerical score relating to the LOS A - 

F grade as follows: A 2.00, 2.00 < B 2.75, 2.75 < C 3.50, 3.50 < D 4.25, 4.25 < E 5.00, and F > 

5.00 [27]. The HCM BLOS model was developed by showing videos of various bicycle facilities 

to participants who were asked to rank how satisfied they were with the bicycle facilities on a 

six-point scale ranging from “very dissatisfied” to “very satisfied” (Parks et al. 2013). 

The HCM BLOS model considers width of outside lane, width of bike lane, width of 

shoulder, proportion of occupied on-street parking, vehicle traffic volume, vehicle speeds, 

percentage of heavy vehicles, pavement condition, and number of through lanes (HCM 2010). 
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HCM BLOS strengths include its basis in bicyclists’ perception of facility characteristics, its 

focus on facility design that is directly under the influence of operating agencies, and that it is 

directly measurable in the field. However, HCM BLOS has multiple weaknesses: lack of 

transparency for the public and decision makers, a focus on arterial roadways over local 

roadways, lack of sensitivity to driveway type, lack of consideration of innovative bicycle 

facilities, intersection LOS that requires further refinement, acceptance of wide outside motor 

vehicle lanes, and limited validation with surveys (Parks et al. 2013). While HCM BLOS A – F 

is familiar to transportation professionals, it is not well understood by the public and decision 

makers, which limits the quality-of-service measure’s ability to assist in the selection of the 

appropriate bicycle facility for a specific location. In addition, HCM BLOS focuses on assessing 

arterials and collectors and does not consider local roads, which research has shown are preferred 

by cyclists, even if the distance was up to 10% longer (Winters 2011). By focusing only on 

BLOS for arterials and collectors, there is a potential to bias the allocation of new bicycle 

facilities to arterials and collectors with a lack of consideration for how local streets fit into the 

network. 

Another bicycle quality-of-service measure is the Bicycle Compatibility Index (BCI), 

which predates HCM BLOS. Bicyclists’ perception of comfort is rated like the HCM LOS A – F 

with A representing the most comfortable and F the least comfortable. The regression model 

used by BCI includes the following significant variables: number of lanes, directions of travel, 

curve lane, bicycle lane, paved shoulder, parking lane width, gutter pan width, traffic volume, 

speed limit, 85
th

 percentile speed, driveway density, presence and type of sidewalks, presence 

and type of medians, and type of roadside development. Adjustment factors are also developed 

for the presence of large trucks or buses, vehicles turning right into driveway, and vehicles 
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pulling into or out of on-street parking spaces. The three primary weaknesses of the BCI LOS are 

reliance on skill level typology, reliance on data which must be gathered through field analysis, 

and inability to analyze segments with varying geometric and operation characteristics. 

A third bicycle quality-of-service measure is the BEQI model which was developed by 

the San Francisco Department of Public Health’s Environmental Section through a survey of 

transportation professionals and members of the bicycling community. Survey participants were 

asked to weigh the most important variables that affected their perception of bicycle facility 

quality. Based on the responses, the variables, “were combined in an index that ranged from 0 to 

100” (San Francisco Department of Public Health, n.d.). The BEQI tool includes 22 variables, 

however, the factors with the highest weight in the BEQI tool are bicycle facility type, bicycle 

facility width, pavement type, pavement condition, slope, pavement markings, connectivity, 

driveway cuts, and presence of trees (San Francisco Department of Public Health, n.d.). The 

primary strength of the BEQI tool is the software that is publicly available to execute the tool. 

The weaknesses of the BEQI tool include the tool being difficult to implement outside of San 

Francisco, requiring a high number of variables, requiring data that needs to be gathered 

manually, and being developed with the input of transportation professionals and current 

bicyclists with no input from potential bicyclists. 

The quality-of-service measure that is most relevant to this research is the MTI LTS. The 

Mineta Transportation Institute study classified roadways and bikeways into four levels of traffic 

stress according to a modified version of Geller’s four types of bicyclists. LTS 1 included 

facilities suitable for children; LTS 2 facilities characteristics were based on the Dutch CROW 

(Center for Research and Contract Standardization in Civil and Traffic Engineering 

(Netherlands)) Design Guide and were intended to be comfortable for most adults; and LTS 3 
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and LTS 4 present tolerance for characteristics of higher stress (Mekuria et al. 2012). LTS 

criteria were developed for the following facility types: physically separated bikeways, bike 

lanes, and shared travel lanes. LTS criteria were developed for right-turn only motor vehicle 

lanes and unsignalized intersections also. High stress roadways at unsignalized intersections and 

limited access roadways were identified as the main barriers to low stress bicycling.  

The MTI LTS takes into consideration the following variables; number of through lanes, 

bicycle facilities, posted speed, width of bike lane, width of parking lane, bike lane blockage, 

right turn lane geometric information, on street parking (alongside bicycle facilities), signalized 

intersections,  and median (Mekuria 2012). The two main strengths of the MTI LTS are being 

more intuitively understandable to the public and decision makers and considering both current 

and potential bicyclists. MTI LTS has already been deployed in numerous bicycle and pedestrian 

plans. The MTI LTS requires the most readily available data out of the quality-of-service models 

discussed here. Requiring easily accessible data makes the analysis of roadways and bikeways 

much easier for jurisdictions. Unlike other quality-of-service tools, the MTI LTS categorizes 

facilities based on the preferences of the entire adult population who currently bike and who 

would consider biking. 

The MTI LTS has two primary weaknesses: data that requires manual collection and lack 

of research used to validate traffic and roadway characteristics that affect perceived stress. 

Another weakness is the approximation of bike lane blockage by assuming that bike lane 

blockage is frequent in commercial areas and rare in all other areas when it is unknown how 

effective this method is for approximating bicycle lane blockage by motor vehicles (Mekuria et 

al. 2012). Manual data collection is required to measure bicycle lane and parking lane width 

since most jurisdictions do not collect these data. Manual data collection can be very time 
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consuming and may not be feasible. The majority of the criteria used to classify roadways and 

bikeways by LTS level were based on Dutch bicycle design criteria and not through research 

measuring the perceived stress or comfort of roadway, bikeway, and traffic characteristics for 

U.S. current and potential bicyclists.  

As the literature review illustrates, existing bicycle quality-of-service measures often 

require data that are labor intensive and costly to obtain, lack transparency and are difficult for 

the public and decision makers to read, and are unable to analyze innovative bicycle facilities 

such as protected cycle tracks. To help agencies and decision makers have access to a quality-of-

service tool that is easily understood and not data intensive, yet effective, this study proposes a 

modified quality-of-service measure which can be easily implemented throughout the United 

States. 

The modified LTS is built based on the concept that facilities may be associated with 

different levels of perceived safety, and the perception depends on the type of bicyclist and 

his/her tolerance level for traffic stress. There have been several studies that have classified 

bicyclists into different categories based on their skill level (Dill and McNeil 2013, AASHTO 

2012) and bicycling frequency (Winters et al. 2011, Dill and Voros 2007, Sanders 2013, Ahmed 

et al. 2013). However, this study uses the bicyclist classification introduced by Roger Geller 

(Geller 2006) and later modified by Misra et al. (2014). 

Geller (2006) categorized current and potential bicyclists of Portland by their level of 

comfort riding on different types of roadway and bikeway facilities. The four bicyclist types 

suggested by Geller are (i) Strong and Fearless (less than one percent of bicyclists), (ii) Enthused 

and Confident (seven percent), (iii) Interested but Concerned (60 percent), and (iv) No Way No 
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How (33 percent).The Cycle Atlanta typology is a modified version of the Geller typology, in 

which the No Way No How type was dropped, because the typology includes only descriptions 

of those who are currently bicycling or who are interested in bicycling. In addition, the Interested 

but Concerned type used in the Geller typology was split into two types with Comfortable but 

Cautious category intended to include bicyclists such as females and/or older travelers who are 

bicycle enthusiasts, but may be more risk adverse (Misra et al. 2014). See Table 13 for 

descriptions of all four Cycle Atlanta types. People who identify as LTS 2 Comfortable but 

Cautious are estimated to be the largest type present in the population and will not bike on shared 

roadways with high motor vehicle speeds and traffic volume, will only bike on roadways with 

low speeds and low traffic volumes like local or neighborhood roads, and prefer to bike on 

bicycle or shared-use paths. The Cycle Atlanta typology is used in this research as the basis for 

the modified LTS roadway and bikeway criteria which are discussed in more detail later.  

Table 13. Cycle Atlanta LTS Typology 

 

 

 

LTS Type Description 

LTS 1 Interested, but 

concerned 

I have heard a lot about cycling and I am curious to try it, but I 

require facilities geared to cyclists before I would do so 

LTS 2 Comfortable 

but cautious 

I am comfortable on most roads, but strongly prefer facilities geared 

to cyclists and will choose another mode depending on facilities 

LTS 3 Enthused and 

confident 

I am confident sharing the road with vehicles but prefer facilities 

geared to cyclists 

LTS 4 Strong and 

fearless 

I am willing to bike in any situation and being a cyclist is part of my 

identity 
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MODIFIED LTS MEASURE 

The modified LTS quality-of-service measure builds upon the MTI LTS and classifies 

roadways and bikeways by one of four levels of traffic stress based on traffic and geometric 

characteristics such as traffic volume, posted speed limit, number through lanes per direction, 

presence of on street parking, and bicycle facility type.  Roadways and bikeways categorized at 

LTS 1 are the least stressful and have low traffic volumes and low speed limits, while roadways 

and bikeways categorized as LTS 4 are the most stressful and have the highest traffic volumes 

and speed limits. It is estimated that the majority of current and potential bicyclists find LTS 1 

and LTS 2 facilities comfortable.  Table 14 provides a description of the characteristics of 

roadways and bikeways for each LTS. This table is a modified version of a similar table used by 

the Mineta Transportation Institute to describe the roadway and traffic characteristics of its LTS 

measure. MTI LTS classifies protected shared paths, cycle tracks, and side paths as LTS 1; 

however, the modified LTS re-classified protected cycle tracks and side paths as LTS 2 due to 

the increased presence of conflict zones such as driveways and intersections for these facilities as 

opposed to the presence of few conflict zones for most shared paths. MTI LTS considered LTS 1 

facilities suitable for children; however, the modified LTS does not make assessments for 

children since there is very limited research on perceived stress for children. The modified LTS 

also introduced buffered bicycle lanes as a facility type since this facility type was not 

considered by the MTI LTS. 
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Table 14.  LTS Roadway and Bikeway Characteristics 

 

 

 

Criteria Used for Calculating Level of Traffic Stress 

The details of traffic stress classification for separated bicycle facilities are presented 

below. The criteria tables for shared travel lanes and on-road bicycle facilities are also given. 

Note that criteria tables follow the rule that the aspect of a link with the highest LTS determines 

the LTS of that segment. For example, a conventional bicycle lane with no adjacent motor 

vehicle parking (see Table 15) with one through lane per direction (LTS 1), a posted speed of 35 

mph (LTS 3), a functional class of collector (LTS 2), and a traffic volume of 10,000 vehicles per 

day (LTS 2) would be classified as LTS 3 for the link as a whole. The notation “(no effect)” 

LTS 
Level Modified LTS Roadway and Bikeway Descriptions 

LTS 1 

Considered comfortable and low stress by almost all cyclists. Includes shared paths which 
separate cyclists from motor vehicle traffic and present few conflict zones such as 
intersections and driveways. Shared travel lanes are only tolerable if traffic volume is so low 
that cyclists only occasionally interact with motor vehicles and there is little difference in 
travel speed between cyclists and motor vehicles due to a posted speed limit of 25 mph or 
below. Intersections are low stress to approach and cross. 

LTS 2 

Considered low stress by all cyclists except for people who identify as LTS 1. Includes side 
paths and protected cycle tracks which are low stress, but present some conflict zones at 
driveways and intersections. Shared travel lanes can only have one lane per direction, a speed 
limit of 30 mph or below, and must be classified as local. Conventional bike lanes and 
buffered bike lanes allow for slightly higher traffic volume, speed, and classification as local or 
collector. 

LTS 3 

Conventional bike lanes or buffered bike lanes are located on roadways with moderate traffic 
volume and speed and can be classified as minor arterial or lower. Shared travel lanes must 
be classified as collector or lower and 35 mph or lower. Roadways of LTS 3 can have 2 lanes or 
less per direction. 

LTS 4 
Any level of stress beyond LTS 3 excluding limited access roadways. Includes all roadways with 
a posted speed limit above 40 mph and/or 3 or more lanes per direction with or without 
bicycle lanes. 
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means that the factor does not cause an increase to that LTS. Table 15 through Table 19 provide 

the criteria used in developing the proposed LTS. 

Criteria for Separated Bicycle Facilities 

Research has shown that people prefer separated bicycle infrastructure (Winters et al. 

2010, Kremm et al. 2014, Broach et al. 2012, Misra et al. 2014, Dill and Voros 2007, Monsesre 

et al. 2014). MTI LTS classified all separated bicycle facilities (shared-use paths, side paths, and 

protected cycle tracks) as LTS 1. However, this method does not consider the potential stress of 

bicycle and motor vehicle interaction at driveways, intersections, and loading areas. Therefore, in 

this study, separated bicycle facilities or shared-use paths, which are the most separated from 

motor vehicle traffic, are classified as LTS 1. Protected bicycle facilities such as side paths, one 

and two way cycle tracks, and raised cycle tracks are classified as LTS 2 due to the potential 

interaction of motor vehicles and bicycles at midblock driveways, intersections, and loading bays. 

Traffic, Roadway, and On-Road Bikeway Characteristics 

The roadway and traffic characteristics which are considered include: number of through 

lanes per direction, traffic volume or annual average daily traffic (AADT), functional class, and 

posted speed limit. The focus on traffic volume and speed is supported by Winters' survey of 

current and potential bicyclists in Metro Vancouver. This study found that high traffic volume 

and traffic speed were major deterrents from riding (Winters et al. 2011). Thus, for conventional 

bicycle lanes, buffered bicycle lanes, and shared travel lanes, the level of traffic stress for a link 

increases as those variables increase. The perceived stress caused by the presence of or lack of 

on street motor vehicle parking was also considered. 
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Traffic Volume or Annual Average Daily Traffic (AADT) and Functional Class  

MTI LTS does not include traffic volume or functional class when classifying facilities. 

However, research has shown that the majority of people who want to bicycle more list “too 

much traffic” as the top environmental barrier (Dill and Voros 2007). Therefore, traffic volume 

and functional class were included in this study. Number of travel lanes and functional class have 

a strong relationship, as the USDOT FHWA Highway Functional Classification Concepts, 

Criteria, and Procedures states, “roadways are designed and constructed according to their 

expected function” (USDOT 2013). For example, an arterial is designed to be a high capacity 

roadway and would likely have more travel lanes, while a collector would likely have less travel 

lanes than an arterial and a local road even less travel lanes than a collector. Research by Winters 

et al. (2010) also found that when comparing shortest route to actual route, bicyclists traveled 

significantly less along arterial roads than predicted by the shortest route model and significantly 

more along local roads. 

Number of Through Lanes per Direction   

Multilane streets, as opposed to those with one lane in each direction, promote higher motor 

vehicle traffic speed and decreases the visibility of bicyclists for left-turning and cross motor 

vehicle traffic at intersections and driveways (Mekuria et al. 2012). The MTI LTS based its LTS 

criteria for number of lanes on the Dutch CROW Design Manual and modified the Dutch 

standards by allowing more lanes per direction if the roadway had a median. This study did not 

consider medians due to the lack of data on the location of medians in the case study area. 

However, roadways were categorized using the basic number of through lanes criteria used by 

MTI. 
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Posted Traffic Speed   

High motor vehicle travel speeds have been rated by current and potential bicyclists as a 

deterrent to bicycling (Winters et al. 2011). Measures of observed speed when available are the 

best data to use especially when observed traffic speed and the posted speed limit differ. 

However, observed traffic speed is typically not available. Data on posted speed limit are readily 

available and for this reason, were used in the study. The posted speed limit criteria used in this 

study follow the methodology used by MTI for conventional bicycle lanes. This study modified 

the conventional bicycle lane criteria table to create a buffered bicycle lane table since MTI did 

not include criteria for buffered bicycle lanes in its analysis. The criteria table for buffered 

bicycle lanes allows for a slighter higher posted speed limit and functional classification; 

however, the AADT and number of through lanes per direction remain the same. 

On Street Parking   

Winters’ survey of Metro Vancouver residents found that respondents preferred streets 

without on street parking to those with on street parking (Winters 2011). It would be preferable 

to consider if the width of the bicycle lane and parking lane were adequate to reduce perceived 

stress due to the potential of “dooring”. However, parking and bicycle lane width data are 

typically not readily available. Data collection for on street parking was limited to conventional 

bike lanes and buffered bike lanes due to the potential that these facilities would position riders 

in the “dooring” zone. 
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Table 15. Criteria for Bike Lanes Not Alongside Parking Lane 

  LTS ≥ 1 LTS ≥ 2 LTS ≥ 3 LTS ≥ 4 

Through lanes 

per direction 1 (no effect) ≤ 2 (no effect) 

Traffic Volume 

(AADT) ≤ 6,300 > 6,300 - ≤ 14,000 > 14,000 - ≤ 27,000 > 27,000 

Functional Class Local 

Major or Minor 

Collector Minor Arterial 

Principal 

Arterial 

Speed Limit ≤ 25 mph 30 mph 35 mph  ≥ 40 mph 

Note: (no effect) = factor does not trigger an increase to this level of traffic stress. 

 

Table 16. Criteria for Bike Lanes Alongside Parking Lane 

 

  LTS ≥ 1 LTS ≥ 2 LTS ≥ 3 LTS ≥ 4 

Through lanes 

per direction 1 (no effect) ≤ 2 (no effect) 

Traffic Volume 

(AADT) ≤ 3,000 >3,000 - ≤ 6,300 > 6,300 - ≤ 14,000 > 14,000 

Functional Class Local (no effect) 

Major or Minor 

Collector Minor Arterial 

Speed Limit ≤ 25 mph 30 mph 35 mph  ≥ 40 mph 

Note: (no effect) = factor does not trigger an increase to this level of traffic stress. 

 

 

Table 17. Criteria for Buffered Bike Lanes Not Alongside Parking Lane 

  LTS ≥ 1 LTS ≥ 2 LTS ≥ 3 LTS ≥ 4 

Through lanes 

per direction 1 (no effect) ≤ 2 (no effect) 

Traffic Volume 

(AADT) ≤ 6,300 > 6,300 - ≤ 14,000 > 14,000 - ≤ 27,000 > 27,000 

Functional Class 

Local or Major or 

Minor Collector (no effect) Minor Arterial 

Principal 

Arterial 

Speed Limit ≤ 30 mph 35 mph ≥ 40 mph (no effect) 

Note: (no effect) = factor does not trigger an increase to this level of traffic stress. 
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Table 18. Criteria for Buffered Bike Lanes Alongside Parking Lane 

  LTS ≥ 1 LTS ≥ 2 LTS ≥ 3 LTS ≥ 4 

Through lanes 

per direction 1 (no effect) ≤ 2 (no effect) 

Traffic Volume 

(AADT) ≤ 3,000 >3,000 - ≤ 6,300 > 6,300 - ≤ 14,000 > 14,000 

Functional Class Local 

Major or Minor 

Collector Minor Arterial 

Principal 

Arterial 

Speed Limit ≤ 25 mph 30 mph 35 mph ≥ 40 mph 

Note: (no effect) = factor does not trigger an increase to this level of traffic stress. 

 

Table 19.  Criteria for Shared Travel Lanes 

  LTS ≥ 1 LTS ≥ 2 LTS ≥ 3 LTS ≥ 4 

Through lanes 

per direction 1 (no effect) ≤ 2 (no effect) 

Traffic Volume 

(AADT) ≤ 2,000 >2,0000 - ≤ 6,000 > 6,000 - ≤ 14,000 > 14,000 

Functional Class Local (no effect) 

Major or Minor 

Collector 

Minor 

Arterial 

Speed Limit ≤ 25 mph 30 mph 35 mph ≥ 40 mph 

 

CASE STUDY 1 - Beltline 

The modified LTS measure was used to classify roadway and bikeway facilities within a 

six-mile buffer of the Atlanta BeltLine Eastside Trail. The Eastside Trail is a small part of a 

much larger transportation and economic development project which will provide parks, shared 

use paths, and transit along a 22-mile historic railroad corridor in Atlanta, Georgia (Atlanta 

Beltline 2015). The completed Atlanta BeltLine will connect 45 neighborhoods. Four sections of 

the trail are currently completed, and the Eastside Trail, which is the focus of this case study, was 

the first segment to be completed (Atlanta Beltline 2015). The case study area was limited to six-
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miles around the Eastside Trail as research has shown that routes over six miles are perceived as 

a strong deterrent in the choice to bicycle for many people (Winters et al. 2011). 

Data 

Three primary data sources were used in this analysis. The NAVTEQ (a company name) 

Streets 2014 shapefile was obtained by Atlanta Regional Commission (ARC) from the company 

HERE. It includes a comprehensive inventory of roadways, especially local roadways that are 

omitted from other data sources. The other roadway database used in the research, 

RC_ROUTES_ARC, is a modified version of the roadway database maintained by the Georgia 

Department of Transportation (GDOT) and focuses on state managed roadways rather than 

locally managed roadways and bikeways. The third data source was the Metro Atlanta Bicycle 

Facility Inventory, which was compiled from information provided by local governments in the 

region and verified with Google Earth and Bing Imagery. The location of on street parking on 

roadways with conventional bicycle lanes and buffered bicycle lanes was manually coded in 

ArcGIS using Google Earth imagery.  
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Figure 17. LTS Measure Applied in Case Study Area 

 

An overview of the case study area with the modified LTS measure applied can be seen 

in Figure 17. LTS is coded by color with blue = LTS 1, green = LTS 2, orange = LTS 3, red = 

LTS 4, and grey indicating limited access roadways. While only 15% of facilities are LTS 1, a 

little over half, 54%, of the facilities are LTS 2. The robust presence of LTS 2 facilities in 

general was also noted in the MTI study (Mekuria et al. 2012) and indicates the prevalence of 
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local or neighborhood streets in the case study area. Approximately 69% of the roadways and 

bikeways in the case study area are classified at LTS 1 or LTS 2 which are considered low stress 

for the majority of current and potential bicyclists. As can be seen in Table 20, 344 miles of 

facilities are LTS 1 and 1,223 miles are LTS 2 in the case study area for a total of 1,567 miles of 

low stress facilities. Of the 1567 miles of low stress facilities, 1524 miles are local roads while 

the remaining 43 miles are arterials or other connectors. The shared travel roadway criteria can 

be seen in Table 20. For a shared travel roadway to be classified as low stress, it must be a local 

street with a maximum speed limit of 30 mph, have a traffic volume of 6,000 vehicles per day or 

less, and have a maximum of one through lane per direction of travel. 

Table 20.  Distribution of Centerline Miles by Level of Traffic Stress and Facility Type 

 

LTS 1 LTS 2 LTS 3 LTS 4 N/A 
Total 

Miles 
Total % 

Conventional Bicycle Lanes 0% 16% 59% 25% - 35 100% 

Buffered Bicycle Lanes 0% 6% 12% 82% - 2 100% 

Shared Travel Roadways 16% 59% 12% 13% - 2028 100% 

Side Paths 100% - - - - 10 100% 

Protected Cycle Tracks - 100% - - - 1 100% 

Shared-Use Paths - 100% - - - 27 100% 

Limited Access Roadways - - - - 100% 164 100% 

Total Miles 344 1223 270 266 164 2267 

  

Figure 18 presents a zoomed-in version of Figure 17 to provide a more detailed image of 

the LTS classification of roadways and bikeways around the Atlanta BeltLine Eastside Trail, the 

focus of this case study. 
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Figure 18. Closer View of LTS in Case Study Area (Atlanta Beltline) 

 

While the majority of shared travel roadways are categorized as low stress facilities (LTS 

1 or 2), any collector or arterial functional class roadway without a bicycle facility is categorized 

as high stress (LTS 3 or 4) based on the criteria in Table19. The majority of the conventional 

bicycle lanes were categorized as high stress due to high traffic volume and high number of 

through lanes per direction. The buffered bicycle lane criterion allows for a higher threshold for 
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traffic volume and number of through lanes per direction; however, the two miles of facilities 

which have currently been built in the case study area are on roadways with traffic volumes that 

exceed the LTS 1 and 2 threshold.  

Even though a majority of the facilities are classified as low stress by the modified LTS 

measure, it does not mean that the facilities are well connected, as shown in Figure 18.  

Connectivity in the study area is reduced as a result of two factors; limited access roadways 

which do not allow bicycle traffic and collector and arterial functional class roadways which 

trigger the high stress classification. A total of 164 miles of limited access roadways exist 

throughout the case study area. While there are only 419 miles of collectors and arterials in the 

study area, they present barriers to a connected bicycle network. Investment in strategic bicycle 

facilities may be needed to create connected low stress facilities across interstates and other 

limited access roadways.  

A map of roadways and bikeways classified as LTS 1 or LTS 2 is shown in Figure 19. 

This map reveals that while a majority of the roadways and bikeways in the study area are 

classified as LTS 1 and LTS 2, these facilities appear to not be well connected. This concept is 

explored further in the map in Figure 20 where the Atlanta BeltLine Eastside Trail’s bikeshed is 

considered for LTS 1 and LTS 2 facilities. The overview map, Figure 20, shows that the 

bikeshed does not spread very far outward and includes gaps within the bikeshed. Figure 21 

shows a closer view of the previous map. 
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Figure 19. Case Study Area LTS 1 and LTS 2 Facilities Only 
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Figure 20. Eastside Trail Bikeshed with LTS 1 and LTS 2 Facilities Only 
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Figure 21. Closer View of Eastside Trail Bikeshed with LTS 1 and LTS 2 Facilities Only 
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Although a cursory overview of the study area reveals a large amount of LTS 1 and 2 

roadways and bikeways, further analysis reveals that the facilities are not well connected. This 

means that for people who are comfortable using facilities at LTS 1 and LTS 2, estimated to be a 

majority of current and potential bicyclists, the bike network is disconnected. The case study also 

shows that while local roadways are an important part of a low stress bicycle network, a well-

connected bikeway network cannot be achieved with local streets alone. Collector and arterial 

roadways provide the connectivity of a roadway network, yet they are too stressful for the 

majority of current and potential bicyclists without bicycle facilities that provide separation from 

motor vehicle traffic. Conventional bicycle lanes and buffered bicycle lanes are appropriate to 

install on collector and arterial roadways when the traffic volume is lower. However, collector 

and arterial roadways with high traffic volume require greater separation through the use of 

protected cycle tracks or side paths.  

CASE STUDY 2 – MARTA Stations 

A further investigation was conducted to demonstrate the utility of using LTS 

methodology in evaluating the impact of bicycle infrastructure investments.  In this case, a 

similar analysis was undertaken for a 3 miles buffer around the MARTA West End, Oakland 

City, and Lakewood/Ft. McPherson stations.  Improving the bicycle network around MARTA 

stations can directly increase the bike catchment area for that station and, as a result, could 

substantially change the commute environment around that station.  These stations were chosen 

specifically for the current development strategies based on market strength and social equity.  

To evaluate the low stress bike networks accessing the West End, Oakland City, and 

Lakewood/Ft. McPherson MARTA stations, three low stress (LTS 1-2) networks as well as the 

entire (LTS 1-4) bike network were compared based on total network length, accessible area, and 
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accessible population.  The accessible area and population were determined based on the 2010 

census blocks that intersected each network.  The 2010 census was used instead of the 2009-

2013 5-year American Community Survey (ACS) estimates because the 5-year estimates are 

only available at the block group level.  The study area population was only 1.7% larger based 

on the 2013 5-year ACS census block group estimates compared to the 2010 census blocks, and 

so the 2010 census blocks were chosen for the analysis to allow higher precision.  The block 

group was not granular enough to provide a precise enough definition of the study area.   

The low stress networks analyzed were based on the existing low stress infrastructure, 

proposed improvements in the area, and select key improvements based on the LTS analysis.  

The final entire LTS bike network included the entire bike network and represented the network 

available to the most stress-tolerant bicyclists.  For each of these analyses, the LTS network was 

converted into a Network Dataset in ESRI ArcMap.  The service area tool identified the streets 

that were within a network distance of 3 miles from each of the study area MARTA stations.   

Figure 22 shows the LTS 1-2 area accessible to each of the study area MARTA stations 

by network distance.   
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Lakewood / Ft. McPherson 

 

 

 

 

 

Figure 22. Service Area Analysis based on Existing Conditions LTS 1-2 (Blue) and LTS 1-4 

(orange) Network  
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Proposed Improvements – Low Stress Network  

Figure 23 highlights the location and LTS classifications for the proposed improvements (the 

thick line shows the improved LTS and the superimposed thin line shows the original LTS for the same 

link).  The specific improvements are concentrated in the around West End MARTA station.  The 

addition of the Southwest portion of the beltline trail and the proposed multi-use trail along Peters Street 

and Lee Street are the most impactful improvements. Figure 24 shows the bike-able network based this 

proposed network, restricted to a 3 mile network distance from each of the study area MARTA stations. 

 

Figure 23. LTS for Links with Proposed Improvements (thick line) and Previous LTS (thin line) 
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Figure 24. Service Area Analysis based on Proposed Conditions based on Cycle Atlanta Phase 1.0 

Plan, Infrastructure Bond, and Southwest Beltline Access Points.   
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Select Key Improvements – Low Stress Network  

In addition to the proposed improvements network, select key improvements were 

modeled as a demonstration of how this network analysis could be used to identify priority 

improvements.  Potential key improvement locations were identified based on the existing 

network (Figure 25).  These key improvements modeled in the analysis serve as an example of 

how select targeted improvements can provide major improvements in accessibility.  This simple 

demonstration includes less than 4 miles of high quality improvements (primarily cycle tracks 

and/or side paths) (Figure 25, thick blue lines represent these key improvements).  Figure 26 

shows the effect of select key improvements in the study area considered in this analysis. 

 

 

Figure 25. Existing Network with Possible Key Improvements  
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Figure 26. Service Area Analysis based on Select Key Improvements.  



    
 

175 

 

Entire Bike Network 

The final network considered under this analysis includes the entire bike network.  This includes 

all infrastructure that a bicyclist is legally permitted to use (i.e. the network excluding highways and 

restricted access roadways), including roadways classified as LTS 1-4. This network is shown in Figure 

27. 

 

Results 

The accessible area for West End, Oakland City, and Lakewood/Ft McPherson were 

determined based on a service area analysis with a maximum of a 3 mile network distance.  This 

service area analysis was conducted separately for four different networks: existing conditions 

LTS 1-2; proposed improvements LTS 1-2; select key improvements LTS 1-2; and the entire 

bike-able network for strong and fearless users (LTS 1-4).  Figure 28 shows that as the network 

improved, the accessible area also expands.   

The tables included within Figure 28 show that the overall network distance increases 

with improvements in the bicycle infrastructure.  Figure 29 shows that there are increases in the 

relative makeup of each network by distance category.  The proposed improvements are 

associated with the largest increase in accessibility at 2-3 miles (158% increase compared to the 

existing network (Figure 29).  The select key improvements, when compared to proposed 

improvements, are associated with an additional 149% increase in network length within 0.5 – 1 

mile of the stations and an additional 90% increase and 85% increase within 0.5 miles and 1-2 

miles respectively.  This analysis indicates that in addition to expanding the overall network, the 

select key improvements are associated with increasing the length of the network within 2 miles 

of the stations.   
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Figure 27. Service Area Analysis based on Entire Bike-able Network (LTS 1-4) 
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Figure 28. Bike Accessibility by Network Distance for Each of the Four Modeled Networks.   
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Figure 29. Total Network Length by Distance from the Study Area Stations 

 

To evaluate accessible population and bike-able area, the census blocks that intersect 

each network were identified and compared to the entire study area population, area, and 

network distance.  The entire study area network is 443 miles long.  The LTS 1-4 network is 333 

miles long, representing 75% of the network distance, 78% of the study area, and 84% of the 

population.  Under the existing conditions, the low stress bike-able network is only 53 miles 

long, representing 12% of the network distance, 13% of the study area, and 15% of the 

population.  The proposed improvements define an accessible network that is 101 miles long and 

represents 23% of the network length, 23% of the study area, and 23% of the population.  In 

addition to the proposed improvements, the select key improvements add an additional 49 miles 

to the network length (34% of the total study area network) and provide bike-able access to 50% 

of the population within the study area.   

The proposed improvements increase the population that can access MARTA through a 

low stress bike network by 55%, while the select key improvements increase the accessible 

population by an additional 116% (Table 21).  There are above average increases in the 
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accessible African American population and the population over 45 years old with the proposed 

improvements.  Comparing the proposed improvements network to the select key improvements 

network, there are additional, above average increases in the accessible African American 

population, the 18-24 year old population, and (to a much lesser degree) the female population.   

 

Table 21. MARTA Access Demographics based on a 3 mile Biking Distance and Different Levels of 

Stress and proposed bicycle improvements(Data: 2010 Census) 

 

Low Stress 
Existing 

Conditions 

Proposed 
Improv. 

Select Key 
Improv. 

LTS  
1-4  

Study 
Area 

 
Proposed 

increase in 
Access 

Additional 
Select Key 

Improv. Increase 
in Access 

Network 
Length 

53.0 100.8 150.0 332.9 443.3 
 

90% 49% 

Land Area (sq 
mi) 

4.1 7.0 13.1 24.0 30.9 
 

71% 89% 

Total 
Population 

14,656 22,649 48,877 83,142 98,597 
 

55% 116% 

White Alone 1,120 1,335 2,144 5,059 6,293  19% 61% 

Black Alone 12,991 20,516 45,305 74,936 88,192  58% 121% 

Non 
White/Black 

Alone 

545 798 1,428 3,147 4,112 

 

46% 79% 

Under 18 years 3,790 5,629 11,007 19,565 23,607  49% 96% 

18-24 years 1,692 2,521 9,393 13,297 14,874  49% 273% 

25-34 years 2,356 3,435 6,443 11,412 13,493  46% 88% 

35-44 years 1,834 2,784 5,305 95,71 11,482  52% 91% 

45-54 years 2,001 3,155 6,206 10,862 13,054  58% 97% 

55-64 years 1,557 2,552 5,248 9,111 10,927  64% 106% 

Over 65 years 1,426 2,573 5,275 9,324 11,160  80% 105% 

Female  7,688 11,884 25,912 44,276 52,278  55% 118% 

Male  6,968 10,765 22,965 38,866 46,319  54% 113% 

 

These results show that the proposed improvements in the study result in a considerable 

expansion of the bike-to-transit access area.  These improvements in accessibility resulting from 

the proposed improvements are exclusively a result of the investment in infrastructure around 

West End Marta stations.  These improvements would result in a disproportionately large 

increase in the bike to transit access for African American, adult, and aging populations (Table 

21).  These results show that the stated intentions of the bicycle planning efforts in Atlanta to 
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improve overall access with specific interest in the minority and aging population are consistent 

with this analysis of the low stress bicycle network.   

The strategic key improvements were identified based on a visual identification of choke 

points in the low stress network.  The improvements resulted in an additional 116% increase in 

transit access to population with low stress bike conditions.  This increase was primarily around 

Oakland City and Lakewood/Ft McPherson stations with the largest increase in access among 

18-24 year olds (273%, Table 21).   

DISCUSSION 

With the very limited network, only15% of the population in the study area can bike 

along a low stress network to a MARTA station. 

The proposed improvements are associated with dramatic increases in low stress bike 

access to the transit stations, specifically in the area north west of the West End station.  Under 

the existing conditions, low stress bike access to/from the West End station is prevented because 

high stress arterials surround the study area.  However, the proposed improvements along Lee 

Street and the access to the South West portion of the beltline provide low stress access to the 

West End station.  This access in the area immediately surrounding the station connects to local 

residential streets which extend north and west, expanding the access to low stress bike network 

by 90% and the accessible population by 55% (Table 21).   

The select key improvements were identified solely with the intent of expanding the low 

stress bike access to the MARTA station in the study area.  The select improvements are 

intended to improve low stress bike access to the Oakland City MARTA station from the west 

side of the study area, improve access to the Lakewood/Ft. McPherson station, and allow low 

stress East-West connection across the rail corridor (the East-West connections between Oakland 
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City and West End were all categorized as high stress links).  These targeted improvements 

expanded the network by 49% and increased the accessible population by 116% (Table 21).  The 

majority of the improved low stress bike access to MARTA resulting from the select key 

improvements are to the west of the Oakland City Station.  

 

ANALYSIS OF LTS BY CRITERIA 

In addition to conducting the low stress bike network accessibility analysis, it was 

important to understand first what components of the LTS criteria may be driving the overall 

LTS.  The development of the LTS criteria was based in an analysis of existing literature.  This 

analysis is an attempt to understand whether or not any single criterion component was driving 

the overall LTS designation.   

To better understand how each criterion impacted the overall LTS score, the LTS of each 

link was identified based only on a single criterion, and each link was given 4 “LTS by Criteria” 

scores: Lane LTS, AADT LTS, Functional Classification LTS, and Speed Limit LTS.  Figure 30 

visualizes each of the four LTS by criteria in three different maps.  Each row includes only the 

links that were scored as a specific overall LTS (2, 3, or 4) based on all the criteria.  Each 

column shows the LTS score according to a specific criterion (by column).  For example, all the 

maps in the Overall LTS 3 row visualize the same links, but each link is colored according the 

LTS by Criteria.  The map in the Overall LTS 3 row and the Functional Classification column 

shows the LTS as it would have been determined by the Functional Classification of the link (for 

only links that were given an overall LTS of 3).  If a single criterion map in the LTS 2 row is 

predominantly light green (LTS 2), then that criterion is driving most of the LTS 2 designation.  

In this case, LTS 2 is driven mostly by the speed limit designation.   
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For the low stress bike network analysis, LTS 2 was considered bike-able and LTS 3 was 

considered too stressful.  As a result, the specific criteria driving the jump from LTS 2 to 3 are 

the most meaningful in the analysis.  Figure 30 shows that the two criteria that may be driving a 

link getting categorized as LTS 3 are functional classification and speed limit.   Figure 31 shows 

the cases in which speed limit and functional classification are the sole determiners of a link 

being classified as LTS 3 instead of LTS 2. 

The classification of a link as LTS 3 compared to LTS 2 solely because of the speed limit 

seems a legitimate upgrade in LTS.  The BLOS and the BCI research both show that a bicyclist 

is able to perceive a difference in speed.  The 85
th

 percentile speed of a link in the BCI index will 

increase the overall BCI by 0.16 for every 5 mile per hour increase in speed (Harkey et al., 

1998).  The impact of speed limit on BLOS is less obvious as the factor included in the BLOS 

equation is: [1.1199 ln(SPD – 20) + 0.8103] * (1 + 10.38 * HV)
2
, where HV stands for the 

proportion of heavy vehicles and SPD stands for prevailing speed.  It is not obvious what the 

exact speed limit threshold should be, but it is intuitive that there is one that exists.   
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Figure 30. Overall Relevance of Specific Criteria for Determining Overall LTS   
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Figure 31. Infrastructure with LTS 3 because of Speed Limit (highlighted in pink) and Functional 

Classification (highlighted in blue).   
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It gives pause that links with widths, volumes, and speed limits that classify as LTS 2 

should be bumped up to LTS 3 solely because of the functional classification.  The functional 

classification is not included in BCI, BLOS, or original LTS methodologies, and it is unclear 

whether or not this criterion alone should prevent a link from being included in the low stress 

network.  However, without further research identifying whether or not the functional 

classification of the road is perceived by bicyclists, there is no justification for eliminating this 

criterion from the analysis.  Therefore, the analysis proceeded with all four LTS criteria. 

 

CONCLUSION 

The increased interest in robust bicycle networks by cities throughout the United States 

emphasizes the need for a standardized bicycle quality-of-service measure that will allow the 

designation of streets into different categories. This study proposes a quality-of-service measure 

for bicyclists that is based on the perceived level of traffic stress that the users of differing 

typologies attach to the facility. The modified LTS measure uses traffic and roadway 

characteristics data that are readily available to most transportation agencies and has been 

validated by the literature.  

The modified LTS measure can be used by transportation professionals to compare 

alternative roadway and bikeway designs using quantifiable variables such as speed limit, traffic 

volume, and number of through travel lanes. The modified LTS measure also provides results 

that can easily be understood by the public and decision makers. The case studies presented here 

demonstrate that the LTS methodology in conjunction with a simple connectivity analysis can be 

used to evaluate and compare bike accessibility within the network and to access transit stations.   
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The methodology for comparing access presented here could also be applied to a 

comparison of specific bike infrastructure investment alternatives.  The analysis could be used to 

answer questions like: Could more people access transit through low stress bike infrastructure 

with a 5-mile buffered bike lane on street X, a 2-mile cycle track along street Y, or 6-0.1 mile 

side paths targeting specific holes in the low stress network?  Of course, the question is specific 

to low stress bike access, and before making any infrastructure investment, it is important to 

consider the larger planning context.  

Overall, the case study was successful in evaluating the low stress bike access to 

MARTA stations and comparing this access based on different bicycling infrastructure 

improvements.  However, it is important to understand that the LTS methodology itself has yet 

to be validated through any user studies.  Although the specific criteria thresholds defining each 

LTS level are supported by the literature, they were developed based on the expert opinions of 

several researchers.   

Furthermore, some of the data that may affect perceived LTS were intentionally not 

included in this study. In the future, the modified LTS may be updated to include intersection 

LTS (signalized separated turning movements, vehicle entry point for bicycle lanes and protected 

cycle tracks, bike boxes, left-turn queue and unsignalized intersection crossings) and bicycle 

boulevards depending on data availability and sufficiency. 

The next steps in this research must be to validate the LTS methodology.  The case study 

analysis shows there is potential value gained from using the current iteration of the Atlanta LTS 

methodology to compare potential bicycle investments. However, before the method becomes 

too established in practical applications, it is essential that efforts are made to validate the LTS 

methodology.     
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CHAPTER 8.  CONCLUSIONS AND RECOMMENDATIONS 

The short term goal of this study was to develop a smartphone app to record cyclist trips 

in Atlanta to obtain data about infrastructure preferences.  These data can eventually be used to 

create a bicycle route choice model to better understand the need for new cycling facilities in 

Atlanta. Currently, the activity based model of the Atlanta Regional Commission is capable of 

predicting the number of bike trips in the region, but lacks the capability of assigning the trips 

onto the city network. The next phase of this research will include a route choice model with 

logsums from the model estimate that can be fed back to the regional demand model to forecast 

where the generated trips are most likely to occur. This will greatly help the agency to plan for 

infrastructure and in improving travel demand forecasting for the region.   

The materials produced in this project have been used to give multiple professional 

seminars and have been included in an undergraduate course titled Multimodal Transportation 

and a graduate course titled Complete Streets at Georgia Tech.  Presentations that have results 

from this work include: 

 Watkins, K., R. Ammanamanchi, J. LaMondia, and C. LeDantec, “Comparison of 

Smartphone-based Cyclist GPS Data Sources”, Transportation Research Board 2016 

Annual Meeting. 

 Watkins, K. Integrating Ped/Bike Concepts into University Courses, Ped-Bike 

Information Center (part of UNC Highway Safety Research Center) webinar, August 

2015. 

 Watkins, K. Crowdsourcing Cyclist Data, Unraveling Cycling and Pedestrian Flows 

(European Research Council Grant Kick-off Conference), Amsterdam, Netherlands, 

July 2015. 

 LeDantec, C., K. Watkins, R. Clark, and E. Mynatt, “Cycle Atlanta and OneBusAway: 

Driving innovation through the data ecosystems of civic computing”, HCI 

International 2015. 
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 LeDantec, C., M. Asad, A. Misra, and K. Watkins, “Planning with Crowdsourced Data: 

Rhetoric and Representation in Transportation Planning”, ACM Conference on 

Computer-Supported Cooperative Work and Social Computing, 2015. 

 Watkins, K. and C. LeDantec. “Cycle Atlanta”. Presentation in the Bicycling Atlanta 

session at the Atlanta Studies Symposium, March 2015. 

 Misra, A., K. Watkins, and C. LeDantec, “Socio-demographic Influence on Cyclists’ 

Self Classification by Rider Type”, Transportation Research Board 2015 Annual 

Meeting. 

 Watkins, K. Cycle Atlanta: Creating a Cycling City, American Planning Association 

National Conference, 2014. 

 Watkins, K. Atlanta’s Innovative Planning Technology (mobile workshop), American 

Planning Association National Conference, 2014. 

 Misra, A., K. Watkins and C. LeDantec, “Cycle Atlanta – Facilitating GPS Based Data 

Collection for Bicyclists in Atlanta” North American Travel Monitoring Exposition 

and Conference, 2014. 

 Watkins, K. Teaching Pedestrian and Bicycle Education, Transportation Research 

Board Pedestrian and Bicycle Education Subcommittee, Washington DC, January 

2014. 

 Misra, A., A. Gooze, K. Watkins, M. Asad and C. LeDantec. “Crowdsourcing and Its 

Application to Transportation Planning” Transportation Research Board 2014 Annual 

Meeting.  

 Watkins, K. Cycle Atlanta: Increasing Public Participation in Cycling Infrastructure 

Decisions, Programs for Promoting Cycling, Alabama Transportation Conference, 

February 2013. 

 Misra, A. and K. Watkins, “Cycle Atlanta: Mapping the Ride to a Better Atlanta” 

Georgia Transportation Institute poster session, September 2013, September 2014 and 

September 2015. 

 

Dr. Watkins offered an undergraduate-level course in the Fall 2013, Fall 2014, and Fall 2015 

semester on Multimodal Transportation at Georgia Tech.  In Fall 2014 and Fall 2015, this was 
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paired with a graduate course in Complete Streets.  The first half of the Multimodal 

Transportation course and the entire Complete Streets course included topics such as integrating 

bike and pedestrian infrastructure into street design.  A module included the data from Cycle 

Atlanta with mapping obtained from the apps to facilitate discussion about data sources to 

understand cyclist movements. Using these materials, Dr. Watkins is available to teach a short 

course about cyclist GPS data collection uses as desired by any local agency. 

CONTRIBUTIONS AND RECOMMENDATIONS 

The primary contribution of this research lies in creating a database for cyclists of Atlanta 

with data from cyclists themselves.  As we mentioned earlier, before Cycle Atlanta, there was no 

benchmark data collection effort that is representative of the cyclists of Atlanta and hence could 

be used for data-based infrastructure planning. Cycle Atlanta bridges that gap by providing route 

and sociodemographic data from real cyclists and thus helps planners to make more informed 

decisions.  

Cycle Atlanta data can also play a major role in bridging the gap between National 

Household Travel Survey data collection efforts and data required in planning for cyclists. As 

mentioned in the literature, preference for infrastructure and hence the decision to bicycle 

depends largely on the confidence and comfort of the cyclist with a particular corridor. Riders 

have been classified into four different categories of comfort and confidence in our research, and 

we linked these categories to the sociodemographic make-up of the cyclists. The 

sociodemographic distribution of any region is readily available via census data, and hence, the 

predominant rider type of that locality can be estimated to make decisions regarding 

infrastructure.  



    
 

190 

 

Cycle Atlanta is unique in its approach to connect sociodemographics of the cyclists to 

the actual route choice and in comparing stated preference of cyclists versus their actual revealed 

preference.  The stated preference survey indicated that separate facilities are preferred by all 

cyclist types irrespective of how confident of a rider they are. However, actual trip analysis 

shows that more confident riders have shorter trip lengths and are more likely to choose shortest 

routes rather than detour for safer facilities. Similar trends are noted across age and gender. 

Therefore, to attract less confident riders and female or older riders, it is necessary to have low-

stress physically separated infrastructure. 

This research also looked into refining the quality of service measure bicycle level of 

traffic stress (LTS) that can be used to understand the suitability of any corridor for a particular 

rider type. Several case studies show that depending on level of confidence, the network can 

appear to be severely disconnected to some cyclists. Our analysis may serve as a starting point 

for GDOT to plan for bicycle infrastructure, and in the future, as infrastructure is built, the LTS 

can be used as a measure of cyclist network connectivity. 
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